
FTAP: A Linux-based program for tapping and music experiments

Reference Manual

Version 2.1.07a

c©2016

Steven A. Finney

www.sfinney.com/ftap

April 26, 2016

1

Contents

1 Introduction 5

2 Installation: Initial Use and Evaluation 5

2.1 Distribution and Installation . 6

2.2 Computer and Operating System . 6

2.3 MIDI and Devices . 6

2.4 Demo Files . 7

2.5 It Doesn’t Work! . 7

3 Usage 7

4 Parameters 9

4.1 Input File Format . 9

4.2 Complete Parameter Listing . 9

4.2.1 Integer Parameters . 10

4.2.2 String Parameters . 10

4.2.3 Array Parameters . 11

4.2.4 Output-only Values . 11

4.3 Integer Parameters . 12

4.3.1 Feedback Parameters . 12

4.3.2 Proportional Delay Parameters . 15

4.3.3 Second Feedback Channel . 15

4.3.4 Masking Parameters . 16

4.3.5 Metronome Parameters . 16

4.3.6 Miscellaneous Integer Parameters . 17

4.4 String Parameters . 17

4.5 Array Parameters . 19

4.5.1 Polyrhythmic Pacing Example . 20

4.6 Triggers . 21

4.7 Parameter Subtleties and Complexities . 21

4.7.1 Triggers . 21

4.7.2 Feedback Channels . 22

2

5 Sample Parameter Files 24

5.1 demo/keythru . 24

5.2 Modified “keythru” . 24

5.3 sample experiments/aschersleben . 25

5.4 sample experiments/finn 99 275 . 26

5.5 Split keyboard . 27

6 Important Program Limits 27

7 Output File Format 28

7.1 Comment Lines, Parameters, and Output Diagnostics 29

7.2 Data Line Format . 30

7.3 Note Data . 31

7.4 MIDI Controller Data . 32

7.5 Trigger Events . 32

7.6 MIDI Hardware Errors . 33

7.7 Data Filtering And Transformations . 34

8 Troubleshooting 34

8.1 FTAP isn’t working at all! . 34

8.2 FTAP isn’t doing what I think it should! . 35

8.3 Quirks/Bugs/Features/Error messages . 35

8.3.1 Error Messages . 36

9 Millisecond-resolution Data Collection 37

9.1 Root Privileges . 37

9.2 General Concerns . 38

9.3 Hardware and Linux Configuration Issues . 38

9.4 MIDI Throughput Benchmarking (“looptest”) . 39

A Distribution 41

A.1 bin . 41

A.2 doc . 41

A.3 params . 42

A.4 src . 42

3

A.5 utils . 42

B Linux OS Configuration Issues 42

B.1 Hardware and MIDI cards . 42

C MIDI 43

C.1 MIDI Data Stream . 43

C.2 MIDI Input Devices (circa 2001) . 44

C.3 MIDI Output Stream . 45

C.4 MIDI Input and Output Devices . 45

D FTAP: Design and Implementation 46

E Sample Experiment Driver in Python 47

F Interactive Mode 49

G User Enhancements/Code Changes 50

H ‘playftap’ usage 50

4

1 Introduction

FTAP is a Linux program for running a variety of sensorimotor (tapping and music) experiments

using MIDI data collection and generation; it has verifiable millisecond accuracy and precision.1 It

allows manipulation of auditory feedback in response to a user’s key presses using MIDI devices for

input and output. You are currently reading the Reference Manual, which assumes that you have

read either the User’s Guide or the article on FTAP in Behavior Research Methods, Instruments,

and Computers (Finney, 2001a). That is, I will assume that you already understand the purpose and

overall design of FTAP. In addition, it will be helpful if you have some knowledge of Linux/UNIX

and that you know what MIDI is, as I cannot provide extensive background information in these

areas. If you think that FTAP might be useful to you but you know nothing about Linux, you may

need to seek outside assistance.

FTAP is provided in source code form at no charge (but without warranty) under the GNU

Public License agreement. My understanding is that the GNU license allows you to use and modify

the software in any way you like for “personal” use, but that any further distribution of the modifed

software must be done in source code form under the GNU license agreement. You can download

the FTAP distribution from “www.sfinney.com/ftap”. If you have comments, bug reports, bug fixes,

enhancement requests, or coded enhancements, I would like to know so that I can deal with them

and/or choose to incorporate them into the standard version of FTAP. Send comments and questions

to sfinney@sfinney.com.

Please cite Finney (2001a) in the writeup of any research you do that uses FTAP.

2 Installation: Initial Use and Evaluation

This section will attempt to provide the minimal information you need to be able to work (or play)

with FTAP on a Intel- or AMD-based Linux system. With this setup, FTAP should will work

fine, but data collection times may be a significant number of milliseconds off (unless you’re on a

very heavily loaded machine, this is not likely to be perceptible). If you decide to use FTAP for

1FTAP began as a program I wrote for an SGI Indigo which I used for my research as a graduate student at Brown

University. I thank Jim Anderson, David Ascher, Peter Eimas, Mike Tarr, and Bill Warren for their assistance during

this time. The port to Linux and many important enhancements were completed during a post-doctoral fellowship at

OSU; I thank Caroline Palmer, Pete Pfordresher, and Shane Ruland for their assistance.

In 2016, I would like to thank Caroline Palmer and her lab, Pete Pfordresher, and Clemens Maidhof for their

interest, assistance, and support. Steve can be reached by email at sfinney@sfinney.com. The FTAP web page is at

“www.sfinney.com/ftap”.

5

millisecond-resolution data collection, there are a number of additional concerns; see Section 9.

2.1 Distribution and Installation

The distribution (as downloaded from the web site) is in ‘gzip’ed and ‘tar’ed format. Run ‘gunzip’

on the downloaded file, and then extract the directory hierarchy using ‘tar’. You will now have a

subdirectory named ‘ftap2.1.07’ (or something close to that). Look at the RELEASE NOTES file,

and then put the ‘bin/ftap’ binary somewhere where you can execute it (e.g., in your personal ‘bin’

directory). There are no auxiliary or configuration files. If FTAP will be used by multiple users

on your system, you might want to put it somewhere like ‘/usr/local/bin’, but at that point you’ll

probably also want to recompile it from the provided source code and make it ‘setuid root’ (see

Section 9).

2.2 Computer and Operating System

FTAP should run on any contemporary Intel or AMD-based Linux box; the ALSA drivers will be

used for MIDI support. My personal test system is a quad-core Athlon running an Ubuntu 14.04

distribution with a 64-bit kernel. Let me know if you’re running some other Linux distribution and

have issues.

See the FTAP web page for additional information.

2.3 MIDI and Devices

FTAP uses MIDI for both data collection and (auditory) stimulus presentation, so you need a MIDI

hardware interface of some kind with both an input and output port, and an installed Linux driver

for that interface. With the current ALSA implementation, most MIDI interfaces should be ”plug

and play”. My current setup uses an Edirol UM-1EX USB-MIDI interface. See the FTAP web page

(“www.sfinney.com/ftap”) for up-to-date information on hardware MIDI interfaces that have been

tested with this release..

FTAP accesses the raw MIDI stream using the device “/dev/midi”; this was the OSS-style in-

terface at the time. Unfortunately, although this worked well in 2001, contemporary Linux systems

usually have their OSS-compatible entry named something something like “/dev/midi2”. To deter-

mine your MIDI interface, do “ls -l /dev/midi*”; if there’s more than one, you’ll need to figure out

which one you’re connecting to. Then, either

• Have your system administrator set up a persistent link from “/dev/midi” to the actual device,

or

6

• Use the MIDIDEV parameter override, e.g.,

ftap <paramfile> "MIDIDEV /dev/midi2"

Next, you will need a MIDI keyboard for input and a MIDI tone generator for output. To run the

demonstration files, you should set both of the devices to transmit/respond on MIDI channel 1. If

you have a keyboard which allows you to turn off MIDI LOCAL mode, you can use that keyboard

for both input and output if you disable LOCAL mode. I have never tried using an internal MIDI

sound card for sound generation. If you get it to work, let me know, but please check the latency of

sound generation.

There are a number of details regarding the MIDI output generated by different keyboards, and

the behavior of different card/driver combinations which are covered in later sections (e.g., Section

9 and Appendix C). If you’re lucky, you won’t need those details yet; they will be important when

you start collecting data.

Note that some MIDI input devices are known to add significant latency. In general, if you know

a device is behaving badly (e.g., a drum pad misses or duplicates taps), then don’t use it. See the

FTAP web page for further discussion.

2.4 Demo Files

The ‘params’ subdirectory contains a number of sample parameter files; you should just try executing

some of the ones in ‘demo’ and ‘sample experiments”. For instance, in the “params/demo” directory

the following command should sound a patterned sequence:

ftap metronpat3

2.5 It Doesn’t Work!

If you have followed the above directions, and are the sort of person who always buys winning lottery

tickets, then FTAP should be working beautifully. If that is not the case, look at later sections of

this manual (e.g., Sections 8 and Appendix C) and try to figure out what’s going on. If you can’t

figure it out after making a good faith effort, send me email.

3 Usage

FTAP is invoked as follows:

7

ftap <paramfile> [param_override*]

The optional parameter override(s) allows for parameter specifications which take precedence over

parameter specifications in the input file. The most common use of overrides is for specifying things

like subject ID or trial sequence number, which are really not part of the experiment description

per se and thus don’t belong in the parameter file.2 A parameter override must be in double quotes

so that the Linux shell passes it to FTAP as a single argument, e.g. “SUB 1” or “NRDELAYS 4

10 20 30 2000”. In actual data collection use, FTAP would normally be invoked with 4 parameter

overrides, for subject (SUB), session (SESSION), trial (TRIAL), and block (BLOCK). The parameter

file name, subject, trial, and block are all (obligatorily) encoded in the output file name. FTAP will

happily overwrite an existing output file without giving any warning.

An invocation of FTAP in an actual experiment might thus be the following; the resulting output

file would be named “250p 250.1.2.3.7.abs”:

ftap 250p_250 "SUB 1" "SESSION 2" "BLOCK 3" "TRIAL 7"

A run of FTAP may be terminated by typing Ctrl-C (or the equivalent keyboard interrupt

character on your system).

When FTAP starts, it will print “Running as normal user” if you are running it without having

done any special configuration. If you have set it up for real data collection (see Section 9), it

will print “Running with realtime privileges”. When FTAP terminates, it will print out a timing

diagnostic like the following:

Mean time between sched()’s (ms): 0.01, schedcnt: 194077

> 1 ms: 1, > 5 ms: 0, > 10 ms: 0, max: 2 ms

This output is significant if you are doing real-time data collection, and it will be explained

further in Section 9.3. It provides information about FTAP’s internal timing on this run.

In research use, it may be best to run FTAP from a script that keeps track of trial numbers

and parameter file locations, and that takes care of trial randomization. Appendix E contains an

example of such a script in the Python language.

If FTAP is invoked with no arguments, it will enter an interactive mode, which allows running

parameter files, changing parameters, etc. This mode was once useful for investigating FTAP, but is

no longer supported. If you insist, see Appendix F.

2Overrides could also be used for using a single parameter file for a range of experiments in which only one value is

changed (e.g., delay time), but it’s really just as easy (and probably safer) to make separate parameter files for each

condition.

8

4 Parameters

An FTAP trial is specified by a text file which lists parameters describing the experiment. A pa-

rameter is a user-settable value that controls some aspect of FTAP’s behavior. Parameters are of

three types, depending on the data value: integer, string, or array (of integers). In addition, triggers

(which changes the value of an integer parameter value during the course of a trial) are also specified

in the input file. The important parameter values for an experiment are listed in the output file; see

Section 7.

4.1 Input File Format

The input parameter file is a simple text file containing parameter specifications. Any lines beginning

with the ‘# ’ comment character, or with a white space character, will be ignored. The basic format

for a parameter specification is

<parameter name> <value>

This is also the format of override parameters, which are the easiest way to specify subject,

session, trial, and block (see Section 3). If the value for a parameter is not specified by a user, a

default value (documented in the following sections) will be used; this will usually lead to a rational

level of inaction. If a parameter is important to your experiment, you should explicitly specify it

rather than relying on the default. Additional documentation on FTAP parameters may be found

in the source files “params.c” and “params.h”.

A sample parameter file is provided in the User’s Guide, and additional examples are provided

in the ‘params’ directory of the distribution and in Section 5 of this Reference Manual. Looking at

(and running and modifying) these files is one of the best ways to see how FTAP works.

4.2 Complete Parameter Listing

This section lists all of the parameters specifiable in an input file, including the default value if the

user does not specify a value, and whether the parameter value will be printed by default to the

output file. Parameters set by a user in a parameter file will always be listed in the output file, and

setting the FULL PARAM PRINT parameter to 1 will cause all parameters can be printed to the

output file. Any parameters not listed in the output file can be assumed to be set to the default

values listed below.

The function of each parameter is explained in subsequent sections.

9

4.2.1 Integer Parameters

The following parameters take a single, non-negative integer as a value.

Name Default Value Default Print

FEED_ON 1 Yes

FEED_CHAN 1 Yes

FEED_LEN 0 Yes

FEED_PMODE 0 Yes

FEED_NOTE 96 Yes

FEED_DMODE 0 Yes

FEED_DVAL 250 Yes

FEED_VMODE 0 Yes

FEED_VEL 0 Yes

FEED2_ON 0 No

FEED2_CHAN 1 No

FEED2_LEN 20 No

FEED2_PMODE 0 No

FEED2_NOTE 80 No

FEED2_DMODE 1 No

FEED2_DVAL 250 No

FEED2_VMODE 0 No

FEED2_VEL 100 No

SPLIT_POINT 64 No

PITCHLAG 0 No

MASK_ON 0 Yes

MASK_CHAN 2 No

MASK_NOTE 64 No

MASK_VEL 35 No

METRON_ON 0 Yes

MET_CHAN 1 Yes

MET_NOTE 64 Yes

MET_VEL 100 Yes

MET_LEN 20 Yes

MSPB 600 Yes

STDOUT 0 No

CLICK1_OFFSET 0 No

CLICK2_OFFSET 0 No

FULL_PARAM_PRINT 0 Yes

4.2.2 String Parameters

The following parameters take a character string as a value. Although double quotes are used here

for clarity, these quotes should not be used in the input file.

10

Name Default Value Default Print

SUB "sub" Yes

SESSION "session" Yes

BLOCK "block" Yes

TRIAL "trial" Yes

COMMENT "" No

CLICK1_FILE "" No

CLICK2_FILE "" No

PITCHSEQ_FILE "" No

FACTOR1 "factor" Yes

FACTOR2 "factor" Yes

FACTOR3 "factor" Yes

FACTOR4 "factor" Yes

FACTOR5 "factor" Yes

MIDIDEV "/dev/midi" Yes

4.2.3 Array Parameters

The following parameters take an array of integers as a value. The first field is the array length, which

is followed by the elements themselves. The default for all of these is an empty list (0 elements).

Name Default Value Default Print

RANDDELAY_ARRAY 0 No

MET_PATTERN_ARRAY 0 No

MET_VEL_ARRAY 0 No

MET_NOTE_ARRAY 0 No

MET_CHAN_ARRAY 0 No

MET_LEN_ARRAY 0 No

4.2.4 Output-only Values

In addition to the parameters which control how FTAP behaves, there are also certain diagnostic

values that FTAP writes to the output file; these are listed below. These cannot be specified by the

user. The diagnostic timing values are described in Section 7.1.

Name Default Value Default Print

TIME --- Yes

VERSION_NUMBER --- Yes

PARAMETER_FILE --- Yes

PERMISSIONS --- Yes

BUILD_TIME --- Yes

AV_DELAY --- No

11

SCHED_AV --- Yes

SCHED_MAX --- Yes

SCHED_MAXTIME --- Yes

SCHED_GT1 --- Yes

SCHED_GT5 --- Yes

SCHED_GT10 --- Yes

IN_DISC_MAX --- No

IN_DISC_MAX_TIME --- No

OUT_DISC_AV --- No

OUT_DISC_MAX --- No

OUT_DISC_MAX_TIME --- No

MIDI_ERROR --- Yes

4.3 Integer Parameters

Integer parameters take a single non-negative integer as value. In some cases, this will be the values

0 and 1, for ‘off’ and ‘on’ respectively. For the feedback parameters FEED CHAN, FEED VEL,

FEED PMODE, FEED DMODE, and FEED VMODE, a value of 0 means that the input keystroke

values will be echoed in the output, while a non-zero value means that there will be some alteration.

Integer parameters (only!) are the ones which can be changed during the course of an experiment

by trigger events.

4.3.1 Feedback Parameters

These parameters specify characteristics for feedback to a subject’s keystrokes. A second feedback

channel is handled by FEED2 equivalents to the FEED parameters documented here; see the dis-

cussion in Section 4.7.2. Most experiments will not require the second feedback channel.

Certain parameters are dependent on other parameters. For example, if FEED ON is set to zero,

none of the other feedback parameters will have an effect.

Most of these mapping characteristics are independent and can be freely manipulated and com-

bined. Extension of mapping modes beyond what is provided here can only be done by modifications

to the C source code, but this is fairly straightforward (see Appendix G).

1. FEED ON: If set to 0, there will be no auditory feedback, that is, no MIDI output in response

to keystrokes, and hence no sound. If set to 1, feedback is turned on. Values of 2 and 3 relate

to the use of multiple feedback channels and a keyboard split; see Section 4.7.2. [Default: 1]

2. FEED CHAN: The MIDI channel to be used for feedback: 0 means the input value from

keystrokes will be unchanged, while values from 1-16 will send the feedback out on the specified

12

MIDI channel. MIDI channel control allows specification of different sounds with a polytimbral

tone generator. [Default: 1]

3. FEED LEN: The length (in milliseconds) of the feedback tone. A value of 0 means that the

user’s key down and key up times are followed (sound will occur for a duration equal to the

time the key is held down). A non-zero value means that the feedback will sound for that

number of milliseconds. When a non-zero length is used, both the NoteOn and NoteOff output

events will be scheduled at time of keypress. [Default: 0]

4. FEED PMODE: Pitch-mapping types. These must be specified as integers in the parameter file,

but are provided here along with their internal designation for convenience (see “params.h”).

Note that the SEQ and LAG values may cause awkward interactions if the second feedback

channel is being used (see Section 8.3): [Default: 0]

(a) 0 (RIGHTPITCH): Output pitch value is same as the keystroke input pitch.

(b) 1 (SAMEPITCH): Output pitch is fixed as FEED NOTE, regardless of input keystroke

value.

(c) 2 (REVPITCH) : Reversed pitch, low notes at right end of keyboard.

(d) 3 (LARGEPITCH) : A semi-random (but consistent, i.e., each note is always mapped to

the same pitch) pitch mapping. Each note will receive a pitch alteration (in semitones)

according to the following list: C:+6, Db:-2, D:+3, Eb:0, E:+15, F:-6, Gb:0, G:+1, Ab:-5,

A: +1, Bb:+2, B:0. (See Finney (1997) for an example use of this.)

(e) 4 (RANDPITCH) : Another semi-random pitch mapping, but one that is not consistent

(hitting the same key twice in succession will give different notes). Each played note will

receive a semitone alteration randomly selected from the range of a 5th below to a 5th

above the input note. NOTE: if FEED NOTE is set to a non-zero value (as is currently

the default), the output notes will range from a 5th below to a 5th above that note,

regardless of input keystroke. Setting FEED NOTE to 0 will cause the output note to

randomly vary centered on the keystroke note. If this description makes no sense, try it

out!

(f) 5 (SEQPITCH) : A fixed pitch mapping. Each succeeding keystroke (regardless of key)

will play the next note from a fixed sequence, specified by the user in a pitch sequence

file (see the SEQPITCH FILE string parameter). Great for non-musicians, as they can

play a melody correctly no matter what keys they hit (see the “bachpitch” file in the

“params/demo” directory).

13

(g) 7 (LAGPITCH) : Play the pitch from PITCHLAG notes preceding the current note, but

with velocity and timing values taken from the current keystroke. At the beginning of a

trial, when there are no preceding notes to use, the FEED NOTE value is used. If silence

(or the actual keystroke values) would be preferable in this case, just use keystroke triggers

and the FEED ON or FEED PMODE parameter appropriately. (See Pfordresher (2001)

and other work by P. Pfordresher and C. Palmer for use of this mode.)

5. FEED NOTE: If FEED PMODE is set to 1 (fixed pitch value in response to any keystroke),

this value specifies what note to use for feedback (from 1-128). FEED NOTE also affects

behavior if FEED PMODE is set to 4 (randomized pitch); see above. [Default: 96]

6. FEED DMODE: Delay mapping types. These must be specified as integers in the parameter

file, but are provided here along with their internal designation (see “params.h”) for conve-

nience. When a note is delayed, the duration of the note is unaffected, i.e., both the NoteOn

and the NoteOff events for a note will be delayed by the same amount. [Default: 0]

(a) 0 (SYNC DELAY): No delay; feedback is synchronous with keystrokes.

(b) 1 (FIXED DELAY): Fixed delay, all keystrokes delayed by FEED DVAL milliseconds.

(c) 2 (RAND DELAY): Randomly (for each keystroke) select a delay from RANDDELAYS ARRAY

(see Section 4.5).

(d) 3 (UNIFORM DELAY): The delay (for each keystroke) is chosen from a uniform distri-

bution between 100 and 300 ms.

(e) 4 (PROPORTIONAL DELAY): See discussion below. This mode has been used in work

by P. Pfordresher and C. Palmer.

7. FEED DVAL: The amount of delay (in milliseconds) if FEED DMODE = 1. [Default: 250]

8. PITCHLAG: If FEED PMODE is 7, PITCHLAG specifies the number of notes back from

which the pitch value will be taken. [Default: 0]

9. FEED VMODE: When set to 0, the velocity value for feedback messages will be the same as

the input keystroke. When set to 1, the velocity on output will be fixed, and specified by

FEED VEL. There are also some preliminary velocity mappings: a value of 2 (REV VEL)

will cause harder keystrokes to give a softer sound, while a value of 3 (RAND VEL) will give

randomized loudness to each keystroke. [Default: 0]

14

10. FEED VEL: If FEED VMODE is set to 1, this specifies the fixed MIDI velocity value to use

for feedback. [Default: 0]

4.3.2 Proportional Delay Parameters

When FEED DMODE = 4, the delay length adjusts according to a running estimate of local tempo,

based on the average of N preceding inter-onset intervals, excluding those that fall above an upper

limit or below a lower limit. If no current average exists (e.g., on the first keystroke of a trial) the

delay length reverts to the FTAP default of 250 ms. If there are not DELAYPPT N intervals, the

available intervals will be used.

4 parameters specify calculation constraints for Proportional Delay:

1. DELAYPPT: An integer indicating the percent of the current inter-onset-interval estimate used

to determine the amount of delay (default = 50).

2. DELAYPPT N: The number of preceding inter-onset intervals that are used to compute the

running average (default = 1).

3. DELAYPPT UPLIM: The longest inter-onset interval (in ms) used to compute the running

average (default = 1000).

4. DELAYPPT LOWLIM: The shortest inter-onset interval (in ms) used to compute the running

average (default = 30).

4.3.3 Second Feedback Channel

A second feedback channel3 is provided which can either provide a second feedback tone for a

given keystroke (e.g., one synchronous tone and one delayed tone), or can provide different feedback

responses in different parts of the keyboard (such a keyboard split might be interesting for two finger

polyrhythmic tapping experiments). Examples are in the “params/demo” directory (the “twochan”

and “splitchan” files). The parameter names for the second feedback channel begin with “FEED2”;

they behave exactly like the “FEED” equivalents, but have different default values (see Section 4.2).

The defaults specify a fixed length, pitch, and velocity tone which is delayed by 250 ms, but the

FEED2 ON parameter defaults to 0 (no sound).

Use of the FEED2 channel to provide a second feedback tone to a keystroke is simple; just set

the FEED2 parameters to the feedback response you want, and set both FEED ON and FEED2 ON

to 1.
3The choice of the term “channel” is perhaps unfortunate, as this is totally independent of MIDI channel.

15

To provide different responses in different parts of the keyboard, it is necessary to use the

SPLIT POINT parameter, and specific settings for the FEED*ON parameters. SPLIT POINT de-

fines the splitting point on the keyboard (e.g., 60 for C4). If FEED ON is set to 2, the response for

the main feedback channel will occur for keystrokes with note values greater than or equal to the

split point, while if FEED ON is set to 3, the feedback response will occur for keystrokes below the

split point. FEED2 ON is set in the same way. So, e.g., set SPLIT POINT to 60, FEED ON to 2,

and FEED2 ON to 3 so that the FEED * parameters define the feedback response for keystrokes on

the right side of the keyboard, and the FEED2 * parameters define the response on the left side of

the keyboard.

There are some limitations on the use of multiple feedback channels; see Section 4.7.2.

4.3.4 Masking Parameters

FTAP provides the ability to output masking noise for the duration of a trial that is, a MIDI note

which stays on for the duration of a trial. MASK ON only takes effect at trial beginning, and would

typically be used with a tone generator that generates some approximation to white noise. MIDI

channel, note, and velocity can be specified. Trigger events do not affect masking noise.

1. MASK ON [Default: 0]

2. MASK CHAN [Default: 2]

3. MASK NOTE [Default: 64]

4. MASK VEL [Default: 35]

4.3.5 Metronome Parameters

FTAP’s metronome provides a flexible form of pacing tone. The integer parameters provide for an

isochronous beat, while array parameters (see Section 4.5) can impose different types of structure

on the tone sequence. If an array parameter is specified, it will override the corresponding integer

parameter. The actual characteristics of the sound will depend on the tone generator used; all FTAP

does is make sure that MIDI NoteOn and NoteOff messages go out at the right time.

The metronome parameters can be changed by triggers, altering the metronome behavior on the

fly. A metronome trigger will affect the tone produced on the specified beat (but not the MSPB

preceding that beat). One use for such triggers would be perturbing a stimulus sequence in a

sychronization experiment.

16

1. METRON ON: 1 if the metronome beat should be sounded, 0 if not. [Default: 0]

2. MET CHAN: MIDI channel for the metronome. [Default: 1]

3. MET NOTE: MIDI note value for the metronome. [Default: 64]

4. MET VEL: MIDI velocity for the metronome. [Default: 100]

5. MET LEN: Length (in milliseconds) of the metronome beat. [Default: 20]

6. MSPB: Length (in milliseconds) between beats. [Default: 600]

4.3.6 Miscellaneous Integer Parameters

1. CLICK1 OFFSET, CLICK2 OFFSET: if click files (see below) are being used, this is the offset

(in milliseconds) from trial start at which the click file will be played. Up to 2 click files are

available. These offset parameters are useful in allowing a single set of pre-programmed events

to be used at different positions or “phases”. There can be two click files, and each one can be

offset by a certain amount. [Default: 0]

2. STDOUT: If set to 1, FTAP output will go to the video screen rather than to a text file. Only

keystrokes will be displayed. This may be useful for long practice or test sessions where you

don’t need the data recorded, as it keeps input data structures where the information is stored

from overflowing (FTAP normally does not write any data to disk while a trial is running; it

is kept in memory). No longer supported, but probably works. [Default: 0]

3. FULL PARAM PRINT: Print out all parameters in the output file, rather than just the default

subset. With this parameter set to 0, the output file header will only include the “obligatory”

parameter printout (see Section 4.2) plus any user-specified parameters, and will be about 30

lines long. If FULL PARAM PRINT is set to 1, the header will be about 60 lines. If you are

debugging a parameter file that doesn’t work as you expect, I suggest setting this to 1 so you

know exactly what you’re getting (I will insist on this if you ask me to troubleshoot a problem).

[Default: 0]

4.4 String Parameters

Some parameters take string values; these are typically file names or documentation strings. Double

quotes, although used below, should not be used in the parameter file itself.

17

The first 4 of the following parameters are values which identify some aspect of the current

experimental run; they are also used to form the output file name

1. SUB: subject id. [Default: “sub”]

2. SESSION: session number, for experiments where subject partipate multiple times. [Default:

“session”]

3. BLOCK: trial block. [Default: “block”]

4. TRIAL: trial number. [Default: “trial”]

5. FACTOR1, FACTOR2, FACTOR3, FACTOR4, FACTOR5: Documentation strings that allow

including names of the experimental factors/conditions in the output file. I thought this would

be useful, but I don’t know if anyone uses it. [Default: “factor”]

6. COMMENT: A single comment line which will go in the output file. [Default: “ ”]

7. CLICK1 FILE, CLICK2 FILE: names of up to two pre-existing files of data that will be played

during the trial. These files must be in the same format as the FTAP output file (i.e., 8

columns, though not all columns are actually used), and the event type must be specified as

‘F’(eedback) or ‘M’(etronome) (other event types, including ‘K’, will be ignored and will cause

an error message). Click events will be written to the output file; the ‘F’ or ‘M’ specification

will be preserved. The easiest way to generate such files may be to either record a performance

using FTAP, or generate an output file using the FTAP metronome. Offsets may be specified

by the CLICKN OFFSET parameters. The file names are interpreted relative to the directory

containing the parameter file. See params/sample experiments/finn 99 fixed for an example.

Note that this is a fairly simplistic playing mechanism that is not really designed for presenta-

tion of complex musical stimuli. [Default: “ ”]

8. PITCHSEQ FILE: if FEED PMODE is set to 5, then this file contains a list of integers (1 per

line) specifying the sequence of notes to be played in response to successive keystrokes. The

sequence will repeat when the end is reached. See ‘params/demo/bachpitch’ for an example.

The file name is interpreted relative to the directory containing the parameter file. [Default: “

”]

18

4.5 Array Parameters

Array parameters are used when there is a list of (integer) values. The format for an array parameter

involves first specifying the number of elements (‘count’), and then the elements themselves. The

number of elements must be at least as large as ‘count’, and only the first ‘count’ elements will be

used. All array parameters default to a count of 0. The maximum length of the random delay list is

10, and the maximum length of the metronome cycle is 40.

1. RANDDELAY ARRAY: Used in conjunction with FEED DMODE = 2, this allows for a form

of random delay. Up to 10 delay values can be specified, and the delay for each keystroke will

be randomly selected from the set. The following specification will randomly choose among

100, 200, or 300 ms delays.

RANDDELAY_ARRAY 3 100 200 300

2. MET PATTERN ARRAY: This allows specification of a pattern on top of the underlying

metronome beat (that is, a pattern of sounded and silent beats). The maximum length is 40

beats. The following line will sound a cycle of 3 beats, followed by a pause (where the rate and

tone characteristics will be determined by the integer metronome parameters).

MET_PATTERN_ARRAY 4 1 1 1 0

3. MET VEL ARRAY: This allows imposing a loudness (MIDI velocity) pattern on the metronome

sequence. The following will make the first of every 4 beats louder than the other 3.

MET_VEL_ARRAY 4 110 80 80 80

4. MET CHAN ARRAY: This allows creating a pattern of changing timbres on the metronome

sequence by specifying the output MIDI channel for each beat (this assumes a polytimbral

tone generator). The following lines will give different sounds for the 1st and 2nd tones of a

two beat pattern, depending on how the tone generator is programmed to respond on MIDI

channels 1 and 2.

MET_CHAN_ARRAY 2 1 2

19

5. MET LEN ARRAY: This allows imposing a pattern of tone length on the metronome sequence.

The following would place a longer tone (agogic accent) every 3 beats in an isochronous se-

quence.

MET_LEN_ARRAY 3 150 80 80

6. MET NOTE ARRAY: This allows imposing a pitch pattern on the metronome sequence. The

following line will repeat an ascending C-major scale.

MET_NOTE_ARRAY 8 60 62 64 65 67 69 71 72

If a metronome array parameter is specified, it will override the equivalent integer parameter. If

multiple metronome array parameters are used (e.g., both velocity and length), they would typically

all be of the same length (as in the following polyrhythm example), but this is not required by FTAP

(see, e.g., the “metronpat3” file in the “params/demo” directory).

4.5.1 Polyrhythmic Pacing Example

The following parameters would provide a 3 vs 4 polyrhthmic pacing signal, with the 4 part of the

signal distinguished by a higher pitch. Unfortunately, FTAP does not permit playing more than one

pitch at the joint accent, so this is played by a third pitch, and stressed by length.4 Although this

example is a little complicated, once it is set up it is possible to change the tempo simply by altering

the MSPB parameter.

METRON_ON 1

MSPB 200

MET_VEL 90

MET_PATTERN_ARRAY 12 1 0 0 1 1 0 1 0 1 1 0 0

MET_NOTE_ARRAY 12 79 0 0 84 72 0 84 0 72 84 0 0

MET_LEN_ARRAY 12 120 40 40 40 40 40 40 40 40 40 40 40

4It might be possible to do some messy manipulations using triggers and the MSPB parameter (making the time

between the first two tones in the cycle effectively simultanous by setting MSPB to 1 millisecond) to simulate multiple

(effectively) simultaneous tones. Also, using the MET CHAN ARRAY parameter in conjunction with clever program-

ming of a polytimbral and stereo tone generator might allow better handling of the joint beat, as well as possible left

ear/right ear separation of the components of the pacing signal.

20

4.6 Triggers

A trigger event is a metronome beat, keystroke number, or elapsed time which causes an immediate

change in an integer-valued parameter5. Triggers are specified by the keyword “TRIGGER”, followed

by 5 obligatory fields. The first field following the word “TRIGGER” is a unique trigger ID (for

identification in the output file), followed by the trigger type: K(eystroke), T(ime), or M(etronome).

The fourth field is the count for the trigger (elapsed milliseconds for time triggers, keystroke number

for keystroke triggers, and metronome count for metronome triggers), and the next two fields are the

name of the integer parameter to change and the new value. A special pseudo-parameter “END EXP”

can be used in a trigger specification to terminate an experiment; it is followed by an arbitrary (but

obligatory) integer. An unparseable or incorrect trigger specification will print a message to the

screen; if your experiment isn’t working correctly, check this. The first trigger specification below

will turn the metronome off on the 10th beat, the second will cause the 6th (and all following)

keystrokes to sound with a delay of 300 ms (assuming FEED DMODE is set to 1), and the third

specification will end the experiment after 15 seconds. Both keystroke and metronome triggers

affect the triggering event itself; however, for the metronome the preceding MSPB has already been

processed, so a metronome trigger that changes MSPB will affect the following metronome pulse.

TRIGGER 1 M 10 METRON_ON 0

TRIGGER 7 K 6 FEED_DVAL 300

TRIGGER 3 T 15000 END_EXP 1

Metronome triggers are counted based on the underlying beat, whether it is sounded or not, with

the first such logical beat starting MSPB milliseconds after trial start, and a logical beat every MSPB

milliseconds later. Metronome triggers are counted on this logical beat basis, regardless of the value

of METRON ON or MET PATTERN LEN.

4.7 Parameter Subtleties and Complexities

This section discusses some fine points of FTAP parameter usage.

4.7.1 Triggers

A somewhat minor feature of triggers may cause problems for a careless user (such as me). The

trigger ID (the second field in the specification) currently serves no purpose other than marking

5There are a few special case instances where this will not work, e.g., integer parameters which only have an effect

at trial start such as MASK ON and STDOUT

21

trigger events in the output data file (i.e., it plays no role in sequencing). However, a second trigger

with the same ID will erase a previous one. A warning message will be written if this occurs.

In FTAP version 2.1.03, there was a problem if a trigger which affected a feedback parameter

occurred between a keystroke down and the corresponding key release (e.g., if a change of FEED ON

from 1 to 0 occurred, the NoteOff was not sent and the note would not terminate). This was fixed

a while ago (probably in 2.1.05); all relevant feedback parameter values are saved when a key is

pressed, and those values are used when that key is released (even if the value has been changed in

the meantime). This has not been tested as thoroughly as I would like (particularly with respect to

multiple feedback channels), but no one has reported any problems.

4.7.2 Feedback Channels

The second feedback “channel” was originally introduced into FTAP to handle experiments with both

synchronous and delayed feedback in response to a single keystroke, including the ability to flexibly

manipulate volume levels for each of the two feedback output events. It was then simple enough

(from an implementation perspective) to extend this to allow two totally independent responses

for a keystroke (e.g., synchronous and pitch mapped feedback combined with delayed and isotonal

feedback), and then a further simple step to allow applying one or the other of those two feedback

responses to different parts of a logically split keyboard, allowing different responses to different

fingers or hands (e.g, one delay value above middle C, a different one below middle C). The resulting

parameters are fairly simple, but the additions are not always fully integrated, and contain some

pitfalls if not used carefully. Note that feedback “channel” here should not be confused with MIDI

channel (which is completely separate); in addition, a feedback “channel” may be polyphonic. In

addition, keyboard splitting relates to, but is also somewhat distinct from, the use of multiple

feedback channels.

The particular issue is that a number of variables in the system are not factored out into the two

channel scheme because it hasn’t been worth the extra complexity. For example, there is only one

RANDDELAY ARRAY variable, so it is not (currently) possible to have independent random delays

on the two channels. Also, MIDI controller input (e.g., pedals, pitch bend) will always be delayed

based on the FEED DMODE parameter.

The following facilities will work fine if only one feedback channel is configured for the given ca-

pability (you can still use the second channel, it just must be programmed with a different mapping),

but will probably give weird results if applied to both feedback channels at the same time. A good

rule of thumb is: Unless you know exactly why you need to use the second feedback channel, don’t.

22

And if you do use it, try to avoid fancy pitch and delay alterations, and don’t rely on use of MIDI

controllers.

1. Fixed pitch sequences : FEED PMODE = 5. The sequence file is shared by the two channels.

2. Pitchlag: FEED PMODE = 7. Currently, you cannot do independent pitch lag alterations on

the two channels.

3. Random pitch mods: FEED PMODE = 4. ???

4. Random delay: there’s only a single random delay array specification (RANDDELAY ARRAY),

though it can be selectively applied to one or both channels.

23

5 Sample Parameter Files

This section contains examples of some parameter files. More are included in the “params” directory

of the distribution.

5.1 demo/keythru

Just output (on MIDI channel 1) whatever the person plays for 10 seconds,

as in normal music performance. This just demonstrates that you can

collect performance data without doing any funny stuff. Setting FEED_ON

to zero would allow investigating performance in the absence of auditory

feedback.

FEED_ON 1

FEED_CHAN 1

FEED_PMODE 0

FEED_VMODE 0

FEED_LEN 0

METRON_ON 0

TRIGGER 1 T 10000 END_EXP 1

5.2 Modified “keythru”

File for a music experiment in which keystrokes are delayed by 250

ms and also sound a random pitch, as in Finney (1997). Terminate

the trial with <ctrl-C>.

FEED_ON 1

FEED_CHAN 1

FEED_VMODE 0

FEED_LEN 0

FEED_PMODE 4

FEED_DMODE 1

FEED_DVAL 250

METRON_ON 0

24

5.3 sample experiments/aschersleben

Synchronization task with an 800 ms isochronous pacing signal and 70 ms

delayed auditory feedback to the subjects keystrokes. The feedback tones

are of fixed pitch, volume, and length, regardless of the subject’s

keystrokes. Ends after 36 pacing tones. Similar to Aschersleben and

Prinz (1997).

Change FEED_DVAL to 0, 30, or 50 for the other delay conditions in

their experiment. To cover up synchronous physical keystroke noise,

set MASK_ON to 1 (this assumes you have an appropriate masking noise

programmed on MIDI channel 2). To investigate effects of tempo on

the amount of negative asynchrony (tapping before the metronome

pulse), simply alter MSPB.

FEED_ON 1

FEED_CHAN 1

FEED_NOTE 90

FEED_VMODE 1

FEED_VEL 127

FEED_LEN 20

FEED_PMODE 1

FEED_DMODE 1

FEED_DVAL 70

MASK_ON 0

MASK_CHAN 2

MASK_NOTE 64

MASK_VEL 30

METRON_ON 1

MSPB 800

MET_CHAN 1

MET_NOTE 60

MET_VEL 127

MET_LEN 20

TRIGGER 3 M 37 END_EXP 0

25

5.4 sample experiments/finn 99 275

Sample experiment from Finney (1999). This is a continuation

paradigm with a 4-2 patterned pacing tone. This trial gives

auditory feedback to keystrokes (with 275 milliseconds delay) only

during the continuation phase (not while the pacing signal is on). Typical

subject response is to sometimes tap groups of 5 rather than 4.

FEED_ON 0

FEED_CHAN 1

FEED_NOTE 76

FEED_VMODE 1

FEED_VEL 90

FEED_LEN 100

FEED_PMODE 1

FEED_DMODE 1

FEED_DVAL 275

METRON_ON 1

MSPB 250

MET_CHAN 1

MET_NOTE 86

MET_VEL 100

MET_LEN 30

MET_PATTERN_ARRAY 8 1 1 1 1 0 1 1 0

TRIGGER 1 M 32 FEED_ON 1

TRIGGER 2 M 32 METRON_ON 0

TRIGGER 3 M 92 END_EXP 0

26

5.5 Split keyboard

Randomized delay to keystrokes on right side of keyboard, no delay to

keystrokes on left side of keyboard. Terminate the trial with <ctrl-C>.

FEED_ON 3

FEED_CHAN 1

FEED_VMODE 0

FEED_LEN 0

FEED2_ON 2

FEED2_CHAN 1

FEED2_VMODE 1

FEED2_VEL 100

FEED2_LEN 100

FEED2_PMODE 0

FEED2_DMODE 2

RANDDELAY_ARRAY 6 100 150 200 250 300 350

SPLIT_POINT 60

6 Important Program Limits

FTAP has a number of hard-wired limits; if these are a problem, you can change the numbers in

the source and recompile (see “src/ftaplimits.h”). FTAP does not do any disk I/O while a trial is

running (to avoid the timing overhead). All data (keystroke, metronome, and feedback events) is

stored in memory until the end of a trial. The space for this is allocated statically to avoid any

overhead of memory allocation.

These numbers have been increased dramatically in 2.1.07; memory is much more freely available

than in 2001.

1. MAXNOTES = 100000 (increased from 15000): Maximum number of stored events (with

separate allocations for input (keystroke) and output (feedback and metronome) events). Note

that NoteOn and NoteOff are separate events. This is probably way more than an experimenter

will need, but it allows a long run of the loop test.

2. MAX TRIG EVENTS = 5000 (increased from 60): Maximum number of trigger events. 60

was sufficient for most normal experiments, but researchers using modified versions of FTAP

that synchronize with EEG over the parallel port need a larger number.

3. MAXPATTERN = 40 (increased from 20): Maximum length of metronome pattern. Should

27

be enough for most purposes.

4. MAXRDELAYS = 10: Maximum number of random delays. Should be enough for most

conceivable purposes.

5. MAXIOI = 20: Maximum number of IOI’s to be saved for the proportional delay (PPT)

calculation.

7 Output File Format

The output file name is hardwired to the format

<paramfilename>.<sub>.<session><block>.<trial>.abs

where sub, session, block, and trial are specified as parameters (the SUB, SESSION, BLOCK, and

TRIAL parameters default to the strings “sub”, “session”, “block”, and “trial” if not explicitly

specified). The suffix “.abs” is around for historical reasons; it represents the fact that time values

in the output file are absolute, rather than relative to the preceding event.6 Since the primary use of

the output is for data analysis, the output is in a columnar ASCII format rather than, say, a MIDI

file (though the latter could be created from FTAP’s output, with some loss of information).

The output file not only provides a full listing of all input and output events, but also provides

information about the active FTAP parameters, the functioning of FTAP, and timing diagnostics. My

approach has been that the output files should be self-explanatory; thus, all characteristics of the trial

(the parameters) plus diagnostic information and date should be included. Unnecessary information

can be removed (using, for example, PERL, Python, or |STAT), but unrecorded information can

never be recovered; too much information is better than too little. However, this philosophy has

been compromised a bit because the header was getting long and unwieldy. The current approach

is that all parameters explicitly specified by the user are printed, as well as a subset of others that I

consider to be crucial (see annotations in Section 4.2). To print out all parameters (recommended,

e.g., if you don’t understand why FTAP is behaving a certain way), set the FULL PRINT PARAM

parameter to 1.

If the STDOUT param is set to 1, a data file is not written; see description of the STDOUT

parameter. This facility is no longer supported, but probably works.

6The file naming format is kind of ugly, but it forces the file name to usefully identify the experiment conditions.

28

7.1 Comment Lines, Parameters, and Output Diagnostics

The data file starts with a listing of informational non-data lines. This header cannot be turned

off, though there is some control over just how much gets printed via the FULL PARAM PRINT

parameter. These non-data lines (e.g., the parameter listings, and output diagnostics) are always

preceded by “# ”; the marking of all these lines with “# ” in the first column makes them easy to

filter out. The parameter values are those at the start of the experiment, before any trigger changes.

The following output-only information values are listed along with the actual experiment param-

eter values:

1. TIME: Time and date that this run of FTAP started.

2. VERSION NUMBER: FTAP version number, currently 2.1.07.

3. PARAMETER FILE: Name of the parameter file.

4. PERMISSIONS: “root” if this test was run with superuser privileges; “user” if not.

5. BUILD TIME: Date and time the running FTAP binary was compiled. This can be useful for

debugging purposes.

Important Diagnostic Parameters (see Section 9.4 for more details). These can be ignored unless

you’re doing real-time data collection.:

1. SCHED AV: Average time (in ms) between calls to the output scheduler. Less than or equal

to 1 is good. More than 1 indicates a problem.

2. SCHED MAX: The maximum time (in ms) between output scheduling calls. More than 3 or 4

ms is probably bad. Running FTAP as “root” and disabling networking and X Windows will

probably improve things.

3. SCHED GT1, SCHED GT5, SCHED GT10: Number of times that calls to the internal schedul-

ing routine were separated by times more than 1, 5, or 10 ms respectively. Any time more than

5 indicates a problem (and there should be no more than a small number greater than 1).

4. SCHED MAX TIME: time of occurrence of the maximum scheduling discrepancy (SCHED MAX).

(ms from trial start).

On my system, trial runs have typically had no more than one or two scheduling times greater

than 1 ms. Note that even if there are occasional long scheduling times, the data is not necessarily

29

corrupt, as the scheduling glitch may have occurred at a time when there was nothing to do anyway.

The following secondary diagnostic variables allow looking at this. They are not included in the

default printout, and may all eventually be removed.

Secondary Diagnostic Parameters:

1. AV DELAY: The overall average delay, a possibly useful diagnostic when using random delays.

Probably bogus if multiple feedback channels are in use.

2. DISC AV: output events are scheduled to be written at a certain time, but the time they’re

actually written may be different if something has gone wrong. The value is the average

descrepancy between actual and correct time. This can be checked in the output file, as the

actual (not intended) time of the write() call to “/dev/midi” is provided there.

3. DISC MAX: Maximum value of such discrepancies.

4. DISC MAX TIME: The time (since beginning of trial) where this discrepancy occurred. The

offending event can then be looked up in the output file.

5. INPUT MAX: in a multi-byte MIDI message, the maximum time between FTAP’s accessing

of the individual bytes.

6. INPUT MAX TIME: The time where INPUT MAX occured.

7.2 Data Line Format

Any line in the file not starting with the ’#’ character (or white space) is an 8 column data line,

arranged in ascending order by time of occurrence (indication of trigger actions is included in these

data lines). The data line format was originally designed for MIDI note events, such as keystrokes,

metronome, and feedback. However, the data file also contains output lines for controller events and

lines showing when trigger events occurred; these both require different types of information. The

output format for these events retains the same column layout as that for MIDI note events, but

reuse of the fields has resulting in a somewhat inelegant mix of formatting. However, it should be

easy to extract whatever information is of interest.

Data lines contain 8 columns. Column 1 always indicates the elapsed millisecond time of the

recorded event relative to trial start, and column 8 always identifies the event type. The event type

codes are:

Note data:

30

1. ‘K’: Keystroke (both NoteOn and NoteOff, that is, key press or release).

2. ‘F’: Feedback (sound in response to a keystroke. May be delayed or mapped from the keystroke

itself).

3. ‘M’: Metronome event.

4. ‘J’: “Junk” event. Currently only applies to masking noise.

Other:

1. ‘C’: MIDI controller.

2. ‘G’: Output/feedback for a MIDI controller (not mnemonic, simply the letter after ‘F’).

3. ‘T’: Trigger event.

7.3 Note Data

If column 8 is ‘K’, ‘F’, ‘M’, or ‘J’, columns 1-7 have the following contents:

1. Col 1: Milliseconds since trial start.

2. Col 2: ‘D’(own) for key press, ‘U’(p) for key release.

3. Col 3: MIDI channel of the event.

4. Col 4: MIDI Note number of the event.

5. Col 5: Pitch name for the MIDI note number of column 4 (e.g. C#4 for 61). ’#’ is always

used for accidentals.

6. Col 6: MIDI velocity (0 for key release; any velocity the input device may produce for NoteOff

events is discarded).

7. Col 7: Sequence number for input key presses, as well as for corresponding feedback events.

8. Col 8: Event type = ‘M’, ‘F’, ‘K’, ‘J’.

Example (a key press data line) :

9630 D 1 86 D5 74 12 K

31

7.4 MIDI Controller Data

If column 8 is ‘C’ or ‘G’, columns 1-7 should be interpreted as follows; understanding some of this

requires knowledge of MIDI details.

1. Col 1: Milliseconds since trial start.

2. Col 2: ‘X’ (meaningless filler)

3. Col 3: MIDI channel of the event (?).

4. Col 4: First byte of MIDI controller data (in decimal). The interpretation depends on column

5. If column 5 is “B0” (MIDI Control Change message), then column 4 will indicate the specific

controller (e.g., 64 for a sustain pedal). If column 5 is E0 (Pitch Bend), then column 4 is the

least significant byte of the pitch bend value.

5. Col 5: The MIDI status byte (nibble) (in hex) of the input controller message. A0 for Poly-

phonic Key Pressure, B0 for MIDI Control Change, E0 for Pitch Wheel Change, . . .

6. Col 6: Second byte of MIDI controller data. For Control Change messages, this will be the

value for the specified controller. For Pitch Bend, it will be the most significant byte of the

pitchbend value.

7. Col 7: 0 (filler).

8. Column 8: Event type: ‘C’ for an input event, ‘G’ for an output event.

Example: A sustain pedal being pressed and released might be recorded as follows:

8000 X 1 64 B0 127 0 C

9000 X 1 64 B0 0 0 C

7.5 Trigger Events

If column 8 is ‘T’, columns 1-7 should be interpreted as follows:

1. Col 1: Milliseconds since trial start.

2. Col 2: Trigger subtype: M(etronome), T(rigger), K(eystroke).

3. Col 3: 0 (filler).

4. Col 4: Trigger ID (second field of the TRIGGER parameter line).

32

5. Col 5: “- -” (filler)

6. Col 6: Internal index; ignore.

7. Col 7: 0 (filler).

8. Col 8: Event type: ‘T’.

Example: A metronome trigger:

TRIGGER 1 M 32 FEED_ON 1

Corresponding output line (metronone at 250 ms MSPB):

8000 M 0 1 -- 0 0 T

7.6 MIDI Hardware Errors

One hardware setup circa 2001 generated occasional MIDI hardware errors (e.g., a note value of 0);

this occurred about 1 time out of every 15,000 input events. There is now some code in “linux midi.c”

(see the ReadMidiEvent routine) which detects some obvious cases of errors (e.g., a note error of 0),

and a diagnostic is printed to the screen. In addition, a “MIDI ERROR” entry is made in the output

file, immediately before the data lines (a maximum of 10 errors is reported); I suggest always checking

your output files for the presence of this string. An example is the following, where the first field

is the time of the detected error, and the other fields are bytes of the MIDI data stream (these are

not necessarily the precise raw bytes, e.g., the input routine has already interpolated MIDI running

status). The velocity of 255 is bogus.

MIDI_ERROR 54675 0x80 19 255

If you are getting MIDI errors, there’s not much I can say. I was usually able to recover (by

hand) what the original data should have been, but this requires a certain amount of detective work,

and reasonable knowledge of the MIDI data stream and aspects of your keyboard (it is particularly

difficult because FTAP does not retain an exact copy of the input stream). It should also be noted

that only certain obvious MIDI errors are detected (although this accounts for about 3/4 of the

situations I had problems with). Some useful information is in Appendix C.

Best of all, switch to a MIDI interface that passes the 10 minute version of the looptest (see

Section 9.4).

33

7.7 Data Filtering And Transformations

The potentially extensive data in the output file can be filtered for analysis as necessary, though I

recommend keeping the original .abs files around as a complete raw data record. It’s simple to filter

these events using something like the “dm” program of Gary Perlman’s |Stat (//www.acm.org/ perl-

man/statinfo.html) or a shell script, or a Python or Perl program. For instance, if the only data of

interest are the keystroke down times, remove any lines with the comment character (’#’) in column

1, and then extract all lines with ‘K’ in column 8 and ‘D’ in column 2. The data values in column 1

of the resulting file will be the keypress times.

8 Troubleshooting

This section contains some hints if you can’t get FTAP to work. Some things have certainly been

overlooked in this Reference Manual; notify me if you find such things, and if you’re motivated you

can always look at the provided source code.

8.1 FTAP isn’t working at all!

If you can’t get FTAP to do anything at all, here are some suggestions.

1. Make sure your Linux MIDI system is configured correctly for FTAP use. By default, FTAP

does all MIDI I/O using the default OSS-style device “/dev/midi”; if your system has a different

entry point, you’ll need to set up a symbolic link or use a MIDIDEV parameter override.

A simple setup involves a keyboard attached to MIDI In and a separate tone generator attached

to MIDI Out; the only sound output should be from the tone generator. When you tap on the

music keyboard when FTAP is not running, you should hear no sound (FTAP wants to control

all auditory feedback).7 However, if you run the “midicopy” program in the ‘bin’ directory of

the distribution (source is in the“utils/midicopy” directory), then your keyboard should create

sounds through the tone generator. If “midicopy” isn’t working, you need to sort out your

MIDI setup (e.g., check the MIDI channel settings on the devices you’re using).

If “midicopy” works, then your basic MIDI setup should be OK. If FTAP nonethless seems to

not be working, check the MIDI channels in whatever parameter file you’re running, and look

at the output file to see whether or not input is being recorded.

7Some MIDI/sound cards (e.g., the Roland MPU-401) default to echoing MIDI in back to MIDI out, so this is not

a definitive test.

34

8.2 FTAP isn’t doing what I think it should!

If you’ve created a parameter file, and it’s doing something but not what you think it should be

doing, here are some suggestions (in approximate order). See also Section 4.7:

1. Look at your input file, and make sure you understand what each line is supposed to do. Remove

lines that are not relevant for your particular experiment. Make sure that any parameters that

are important to your experiment are explicitly specified rather than using defaults.

2. Check the output file; everything FTAP has done is in it. Make sure you understand it.

3. Turn on the FULL PARAM PRINT param so the output file will have a full listing of all the

active parameter values for your experiment.

4. Reread this Reference Manual and the User’s Manual to see that you haven’t missed something.

5. Note that FTAP will ignore a line starting with either a ‘#’ or with a white space character.

6. Look for any console errors that occur when you run your file. Sometimes FTAP will not detect

input file problems until it actually starts running.

7. Make sure that you did not reuse a trigger ID (the later use will overwrite the first use).

8. Look at the C source and/or contact me.

8.3 Quirks/Bugs/Features/Error messages

Some quirks of FTAP are described here. These are placed here to aid in troubleshooting. You can

tell me which one(s) are intolerable for future releases.

1. FTAP will print out a diagnostic on any MIDI message it can’t parse, such as SYSEX messages

(it used to abort). FTAP handles a lot of different MIDI messages (although it ignores irrelevant

ones), but often when I try new keyboards I find something new that FTAP can’t handle. FTAP

does not have a smart MIDI parser and it is not clever about dealing with and recovering from

input errors. See Appendix C for some discussion of MIDI.

2. MIDI controller input is subject to the FEED ON, FEED DMODE, and FEED CHAN ma-

nipulations before output, but it is not subject to other manipulations.

3. File names used for input (sequence and click files) are always interpreted relative to the

directory the parameter file is contained in.

35

4. For some (most?) tone generators, having multiple simultanous events of the same pitch may

cause some notes to get cut off; this might occur if doing something like using a SAMEPITCH

pitch mapping (in which all keystrokes get feedback with the same pitch) in an experiment in

which subjects are using multiple fingers. If this is a problem, experiment with different tone

generators and programming; play around with scale tuning to set all notes to the same pitch

if you can do that on your tone generator, etc.

5. If click files are being used to play output during an experiment, and if there are multiple (3

or more) precisely simultaneous output events, the timing diagnostics may consistently show

some inter-scheduler times of 2 or 3 milliseconds. Although I have not isolated the exact

source of this, my guess is that it is due to the use of a (kernel) busy loop within the 4Front

driver. It would be interesting to see whether the problem occurs with the ALSA drivers, which

supposedly do not use a busy loop.

6. Forcing the file name to be in a particular format (with a “.abs” suffix) is somewhat ugly,

inflexible, and un-Linux-like.

8.3.1 Error Messages

On one system, I would occasionally (about 1 event out of 15,000) see what appeared to be hardware

MIDI errors. FTAP currently detects some obvious examples (a MIDI Note Number of 0, or larger

than 127, or a MIDI velocity greater than 127), and will print a “MIDI WARNING” diagnostic to

the screen, and will list information about the detected error (for up to 10 errors) in the output file,

with a “parameter” of MIDI ERROR. If you understand the MIDI data stream, how FTAP handles

MIDI input and output, and the details of the MIDI data that your keyboard puts out (see Appendix

C) it is usually possible to reconstruct the correct data, but it requires a bit of detective work. It is

too much detail to put here (see also Section 7.6).

If FTAP receives a poorly formatted input stream (e.g., two MIDI NOTE on messages with no

intervening NOTE OFF), it will print a cryptic message to the screen about “check soundnote”. In

2.1.05, this would sometimes happen when running the looptest, even when successsful. In 2.1.07,

the “check soundnote” message should not happen unless your MIDI interface has a problem (e.g.,

an occasional lost input message).

36

9 Millisecond-resolution Data Collection

FTAP can do MIDI data collection with reliable millisecond accuracy and precision (see Finney,

2001b, which is recommended/required reading, as well as the FTAP web page), but there are a

number of configuration issues involved in doing this. Such “real-time” use makes use of facilities

requiring root privileges. In addition, not all MIDI card/Linux driver combinations are able to meet

this criterion. FTAP should work fine when run as a normal user, but if you’re doing serious data

collection there are some additional concerns.

In addition, although MIDI data collection and generation is millsecond accurate, I have no

control over latencies added by specific input and output devices. Choose your devices wisely. More

detail is provided on the FTAP web page.

9.1 Root Privileges

When FTAP is being used for real-time data collection, it will use the sched setscheduler and mlockall

system calls, as well as the “/dev/rtc” real time clock, all of which require root privileges. If root

privileges are not available, FTAP should run just fine, except for some small timing inaccuracies.

FTAP will print out either “Running with superuser privileges” or “Running as normal user”, de-

pending upon which is the case; “root” or “user” will also be logged as “PERMISSIONS” in the

output file.

The recommended installation for running “ftap” for real-time data collection is to configure

it as a setuid root program; configuring the program this way requires superuser privileges. Once

this is done, any user can run FTAP as a real-time process. The “installftap” script in the “bin”

directory shows how I do this, but you and/or your system administrator should understand exactly

what this script does before trying to do this. NOTE: “setuid root” programs on a Linux machine

are a potential source of breached security. I don’t think there are any major security issues with

the FTAP program (though I am not a security expert); e.g., it is not possible to invoke a shell

or execute another program from FTAP, and although FTAP may gobble system resources while

it’s running it is explicitly designed to be interruptible from the keyboard. If you’re running on a

dedicated experimental machine (and it is not subject to hacker attacks), and “ftap” will only be

run by forces of good, there should be no worries. If you’re in a potentially hostile environment,

check with your system administrator or technical support person. Basically, until you look at and

understand my C code, and you have compiled it yourself and are running that compiled version,

you should consider FTAP to be an not-fully-trusted binary that you are giving root privileges to.

Be appropriately paranoid.

37

This is one reason why FTAP is distributed in source code form. “setuid root” privileges should

only be given to a trusted program. If you are going to run FTAP with root privileges, then I

recommend that you compile it from scratch (just run the “makeftap” script in the “src” directory).

If you have compilation problems, let me know; I’ve only compiled it on Ubuntu 14.04 with gcc 4.8.4.

Currently, FTAP must be compiled as a 32-bit binary.

Real-time use of FTAP requires that the “/dev/rtc” real-time clock be configured; this should be

the default on most modern Linux systems. See Section B). RTC is used (perhaps counterintuitively)

to insert short pauses while FTAP is running. To prevent FTAP from hogging system resources when

run with root privileges, FTAP contains a .49 ms delay every cycle (this, among other things, allows

for terminating FTAP with a keyboard interrupt (DEL or ctrl-C). If run without root privileges,

FTAP will run perfectly adequately for test and development purposes, and might even be adequate

for collecting data; run it both ways, look at the output diagnostics (described later) and see for

yourself. Counterintuively, on the basis of the output diagnostics FTAP may appear to run faster

when run without root privileges, as in this case there is no forced delay in each loop (it’s not

necessary). Crucially, however, running with root privileges avoids preemption (that is, the worst-

case performance is superior).

9.2 General Concerns

Because of the real time coding in FTAP, system load is less of a problem than it might be in other

cases, but data collection should still be done on a system with no other users logged in (they probably

wouldn’t be happy with system performance anyway), and with no heavy networking activity (e.g.,

not acting as a server). I have found some FTAP performance degradation when X Windows is

running (and I suggest running from a console screen), but I don’t bother taking the system down

to single user mode. Check the diagnostics and see what works for you.

9.3 Hardware and Linux Configuration Issues

FTAP should run on pretty much any contemporary Intel- or AMD-based PC (in 2001, it ran with

millisecond precision and accuracy on 200 MHz Pentium). I have only personally tested with Ubuntu

14.04, but the Linux distribution should not have any major issues (let me know if you run another

version of Linux and you have issues). The standard ALSA drivers should work plug-and-play with

most MIDI interfaces.

However, if you plan on collecting and reporting real-time data in using FTAP, you must verify

your system (including the MIDI interface) using the provided looptest benchmark. Some particular

38

MIDI interfaces will not work well; see the FTAP web page for current details. The loop benchmark

will confirm that an FTAP-MIDI system consisting of FTAP software, the PC, the Linux OS with

all its drivers, and the hardware MIDI interface runs with millisecond accuracy and precision. If

it doesn’t work, try another MIDI interface. 3 of the 4 USB-MIDI interfaces I’ve tried (including

the readily-available Roland UM-ONE mk2) pass the loop test. See the web page for up-to-date

hardware configuration reports.

Note that it is necessary to attach an input device (MIDI keyboard or percussion pad) and an

output device (a tone generator) to such an FTAP MIDI system to actually collect data. You are

responsible for determining the timing characteristics of your input and output devices. Please do

not use percussion pads that are obviously flawed (e.g., that miss or duplicate taps). Again, see the

web page for whatever information is available about MIDI input and output devices.

When FTAP terminates, it will print out timing diagnostics, such as the following:

Mean time between sched()’s (ms): 0.01, schedcnt: 194077

> 1 ms: 1, > 5 ms: 0, > 10 ms: 0, max: 2 ms

If there are many times > 1 ms, or the maximum is greater than 3 ms or so, then your system

configuration is not achieving adequate real-time. If you are trying to collect data, make sure FTAP

is running as setuid root, and try to make sure your Linux system is running with as few processes

as possible.

See Section D for some details on implementation that may help clarify these diagnostics.

9.4 MIDI Throughput Benchmarking (“looptest”)

The above diagnostics only test the internal scheduling of FTAP; they cannot test the speed and

functionality of the MIDI interface hardware and software. MIDI hardware bandwidth is approxi-

mately 30 Kbytes; at 3 bytes for each note on or note off message, this gives a maximal throughput

of approximately 1 keystroke event per millisecond, which is adequate for measuring most human

behavior. I consider FTAP to have adequate performance if it can keep up with an event per millisec-

ond, and timestamp the MIDI input and schedule MIDI output with latency less than 1 millisecond

(“millisecond accuracy and precision”), and it does so on my system. However, not all MIDI inter-

faces can handle the maximal bandwidth without error. This section describes how to check this on

your system.

Once you have a working MIDI setup (e.g., you can play from a keyboard with the “midicopy”

program), and you can run simple FTAP parameter files, you will wish to verify FTAP MIDI through-

put with the “looptest”. Doing this requires a a cable or connector which can connect the MIDI

39

output port back to the MIDI input port. If your computer MIDI interface provides female MIDI

connectors, the required loop can be set up with a standard MIDI cable. If the MIDI interface

provides male connectors (as with most USB-MIDI interfaces), then you will need a more specialized

cable or connector with female MIDI connectors (5 pin DIN) at both ends, with pin 2 connected

to pin 2 (ground), pin 4 connected to pin 4, and pin 5 connected to pin 5. For most USB-MIDI

interfaces with male connectors, you should be be able to use a Hosa GMD-108 MIDI coupler.

Such a loop allows an FTAP feedback event to be immediately interpreted as a keystroke event.

When FTAP runs the “params/benchmark/looptest” file, and the system is configured with such a

cable, FTAP will write a single output priming note (both NoteOn and NoteOff), and then repeatedly

cycle these messages in and out 2000 times. On a well performing system, this should take a total

elapsed time of 4 seconds (4000 events, 1 ms/event), though there is also a little startup overhead.

You should confirm that the total elapsed time of the test is close to 4 seconds (use the Linux “time”

command, or an external stopwatch. Verify that there were no anomalous printed to the console or

to the outputfile. Most importantly, just look at the data in the ‘looptest.sub.session.block.trial.abs”

output file; this will allow you to see the exact time course of the messages in the system.

FTAP 2.1.07 contains additional, more rigorous tests; these have demonstrated problems with

one USB-MIDI interface that did not show up in the shorter test. “ftap looptest 60s” will run the

looptest for 60S (60000 input MIDI events). The “run looptest.sh” script will run looptest 60s 10

times, for a total of 10 minutes of testing. The “loopcheck.py” program8 and the “run loopcheck”

script in the “benchmark” directory will do an analysis of the “looptest 60s” output, in particular, it

calculates statistics on the time between received keystrokes (MIDI input messages). The analysis is

written to the ”loopcheck.out” file. A properly performing MIDI interface will have a mean of 1 ms

or less with a low standard deviation (”std”), and no errors to the console or the output file. Any

MIDI interface that passes this test without obvious screen diagnostics (see Sections 7.6 and 8.3.1)

should be safe to use. See Finney, 2001a,b, and the web page for more detail.

With 2.1.07, the output of run looptest.sh should show that the elapsed time of each run was 60S

or less, and there should be no errors to the console (e.g., “MIDI ERROR” or “check soundnote!!!”).

If the MIDI interface drops a single message in the looptest, this may manifest itself by these console

error messages, or by never terminating (the trigger that would normally end the test is never

reached). One out of 4 tested USB-MIDI interfaces demonstrated both of these behaviors; see the

web page for details.

8“loopcheck.py” requires the “numpy” package to calculate the standard deviation. On Ubuntu, this can be installed

with “sudo apt-get install python-numpy”

40

References

Aschersleben, G. and Prinz, W. (1997). Delayed auditory feedback in synchronization. Journal of

Motor Behavior, 29:35–46.

Finney, S. A. (1997). Auditory feedback and musical keyboard performance. Music Perception,

15:153–174.

Finney, S. A. (1999). Disruptive Effects of Delayed Auditory Feedback on Motor Sequencing. PhD

thesis, Brown University.

Finney, S. A. (2001a). FTAP: A Linux-based program for tapping and music experiments. Behavior

Research Methods, Instruments, and Computers, 33:63–72.

Finney, S. A. (2001b). Real-time data collection in Linux: A case study. Behavior Research Methods,

Instruments, and Computers, 33:167–173.

Lutz, M. and Ascher, D. (1999). Learning Python. O’Reilly, Sebastopol.

Pfordresher, P. Q. (2001). Auditory Feedback in Music Performance: Serial Order and Relative

Timing. PhD thesis, Ohio State University.

A Distribution

The distribution is a directory hierarchy (distributed in gzipped tar format) which contains the

following directories:

A.1 bin

The “bin” subdirectory contains a compiled version of FTAP for a Pentium- or AMD-based computer.

This was compiled under Ubuntu 14.04 with gcc 4.8.4. The bin directory also contains a few other

potentially useful programs (with sources in the “utils” directory).

A.2 doc

The “doc” subdirectory contains LATEX, .dvi, .ps, and .pdf versions of the User’s Guide and this Ref-

erence Manual. It also contains an “scip summary.text” file, which is the summary of a presentation

I gave at the Society for Computers in Psychology conference in 2000, which describes aspects of the

“real-time” implementation of FTAP.

41

A.3 params

The “params” subdirectory contains sample parameter files that you can run. Each has a comment

explaining its purpose. There are 3 subdirectories:

1. demo: parameter files demonstrating many of FTAP’s capabilities.

2. sample experiments: parameter files providing (approximate) replications of a number of stud-

ies in the tapping literature.

3. benchmark: parameter files for testing FTAP’s performance (see Section 9.4).

A.4 src

The “src” subdirectory contains the C source code for FTAP itself. Currently, there is not a makefile,

but rather a “makeftap” shell script which compiles the source. Eventually, the included (system)

.h files from my Linux distribution should also go here, so that you can see what differences there

are in case you have trouble compiling.

A.5 utils

The “utils” subdirectory contains the source for a few C utility programs, as well as a copy of the

Python script in Section E. These programs have not been tested recently, but may still work.

“playftap” is a useful utility for playing FTAP output files; see Section H for details. “midicopy” is

a simple but useful diagnostic/test program mentioned in Section 9.4. “rawmidiloop” is a less useful

(and perhaps non-functionaing) diagnostic program. gettod test contains a version of the Linux

gettimeofday tests reported in Finney (2001).

B Linux OS Configuration Issues

This section contains some minimal notes about Linux OS configuration. If you have any more

information to add, please contact me.

B.1 Hardware and MIDI cards

FTAP should run on any reasonable Intel-based Linux machine (let me know if you try it on another

architecture, such as Alpha or PowerPC). In 2001, two MIDI cards that worked well were a Creative

SB-16 (old and simple) and a more recent Soundblaster Live! Value Digital card. In fact, most any

card (except for a Roland MPU-401) is likely to work, but you really should verify MIDI throughput

using the tests described earlier (Section 9.4).

42

In 2016, the easiest MIDI interface to use on Linux is a USB-MIDI adapter, and most of these

should give adequate performance. At least one that I’ve tried gives errors. See the web page for

up-to-date info, and test your own hardware configuration with the loop test.

C MIDI

FTAP does its own parsing of MIDI input, and thus has to be prepared for whatever a keyboard

generates (and this differs across keyboards; MIDI allows a number of options). If you’re having

problems some of this information may be useful to you. This section will also attempt to document

just how FTAP manipulates MIDI input and output. This section will not be a MIDI tutorial.

C.1 MIDI Data Stream

The basic data processed by FTAP are key press/release events, but there are a number of variants

in how these may be encoded. In addition, keyboards may output a number of other types of MIDI

events.

MIDI Status bytes are unambiguously differentiated from data bytes by having their high bit set.

Key press (NoteOn) events are indicated by a 0x90 MIDI status. There are two allowable ways of

signalling a NoteOff (key release) event: either a MIDI NoteOff event (0x80 MIDI status, possibly

with a non-zero velocity value), or a MIDI NoteOn event (0x90) with a velocity of 0. The MIDI

specification also allows optimizing data stream usage with “running status”: if multiple messages

in a sequence have the same status byte, the status byte can be omitted from all except the first

message. Signalling NoteOff with a 0x90 message with zero velocity allows extensive use of running

status.

FTAP can handle all of the above variants; internally, it places all input data into individual

messages without running status, and with NoteOff Events encoded separately from NoteOn events.

Velocity in NoteOff events is discarded. If FTAP detects any MIDI errors, the MIDI ERROR lines

in the output file indicate FTAP’s parsed input, not the raw input.

Keyboards can also output many other event types. Attached pedals and the modulation wheel

create Control Change Events, and the Pitch Bend Wheel (or the lip sensor on a wind controller)

may put out Pitch Wheel change events. There are two different types of Key Pressure events.

In addition, some keyboards will send MIDI ACTIVE SENSE, MIDI CLOCK, or System Exclusive

messages. FTAP cannot deal with (variable-length) System Exclusive messages (a Juno 106 keyboard

puts these out for some reason), and it will quit inelegantly.9. FTAP will correctly process and record

9FTAP’s input MIDI parsing is perhaps its weakest point. SYSTEM EXCLUSIVE messages are of varying length,

43

most most controller messages in the output file. MIDI Channel Pressure, and Program Change will

be ignored and discarded, as will Timing Clock or Active Sensing messages. SYSEX messages (or

other System Common messages) cause FTAP to terminate, probably ungracefully. WARNING: I

have not tested all of these options, so I can’t guarantee that they work. On the other hand, I don’t

know of any failures.

If you want to see what the raw data stream from your keyboard looks like, use the “midicopy”

program in the ‘bin’ (or “utils”) directory in the FTAP distribution.

C.2 MIDI Input Devices (circa 2001)

Here are some specific notes on the keyboards I’ve tried. Some keyboards may put out MIDI

sequences that FTAP is not currently prepared to handle; if FTAP gives errors with your keyboard,

use the “midicopy” program to determine just what your keyboard/controller is doing.

NOTE: See the web page for any updated (circa 2016) information on MIDI input and output

devices.

Successfully tested input devices:

1. Roland RD-600 controller: works fine with FTAP. Encodes key release with an 0x80 status

byte and a fixed velocity of 64. Uses running status. Use of the Rx and Tx keys allows effective

disabling of MIDI Local mode. Pressing the pedal seems to put out multiple controller messages

for some reason.

2. Fatar Studio 49: Encodes key release with an 0x80 status byte and variable velocity. Does not

use running status. Input device only; requires a separate tone generator.

3. Yamaha DX-100. Uses 0x90 plus 0 velocity for NoteOff, but does not use running status. Not

velocity sensitive; constant MIDI velocity of 64 for all keystrokes.

4. DX7-II. This worked with older versions of FTAP; I haven’t tested it recently. The only likely

problem would be whether Channel Pressure Messages get ignored properly (if this doesn’t

work, the DX7 may allow disabling transmission of Aftertouch). MIDI Local Mode can be

disabled.

5. Yamaha Portasound 500M: puts out Timing Clock messages, but FTAP now ignores them.

6. Yamaha WX5 Wind controller. Both breath control and pitch bend are recorded.

and are not handled. ACTIVE SENSE and MIDI CLOCK messages can occur in the middle of other messages, but

FTAP just ignores them (I hope!). “linux midi.c” should probably be rewritten from scratch...but it does work!

44

Unuseable input devices:

1. Juno-106: puts out System Exclusive messages (at least with our setup); FTAP cannot deal

with these.

From the point of view of tapping experiments, the length of key movement for a MIDI keyboard

compared to, say, touching a metal plate may be a problem. Note also that input MIDI velocities

across different keyboards are not directly comparable in terms of physical velocity. Since all that

FTAP requires is that input be in MIDI format, a device other than a keyboard could also be used,

e.g., a drum pad, a wind controller, or a custom device of some sort (e.g., an ICUBE system).

If a keyboard allows disabling MIDI LOCAL mode, FTAP can use it for both input and output

C.3 MIDI Output Stream

FTAP’s output encodes Note Off messages with 0x80 status and 0 velocity; running status is not

used.

FTAP sends a MIDI ACTIVE SENSE message to the output port every 200 ms. Most MIDI

devices should have no problem with ACTIVE SENSE, but if this is a problem, you can try setting

ACTIVE SENSE ON in metron.c to 0 and recompiling FTAP. This deals with a problem where

some Linux MIDI drivers would send a MIDI ACTIVE SENSE message on device close; this can

trigger some tone generators (e.g., a TX81Z) to require an ACTIVE SENSE message every 300 ms

to maintain a tone. This interfered with FTAP’s masking noise feature.

C.4 MIDI Input and Output Devices

Much of FTAP’s flexibility derives from appropriate programming of the output MIDI device (i.e.,

tone generator). All of FTAP’s control is in terms of MIDI information. For instance, timbre

differences (e.g., having two different sounds in a structured metronome sequence) are specified

in FTAP by designating different MIDI channels for different events; it is up to the experimenter

to set up the tone generator to respond in an appropriate way on the different MIDI channels.

Similarly, relative loudness can be controlled by the use of MIDI velocity parameters, but the actual

loudness will depend on the programming of the tone generator and the voice used. In setting up an

experiment it is necessary and important for the experimenter to measure and calibrate the specific

output devices.

In the simplest case, any tone generator can be used with FTAP, e.g., something which simply

generates a sine wave for MIDI channel one. However, a polytimbral tone generator, combined with

45

FTAP’s ability to specify MIDI channels, allows the use of separate sounds for pacing and feedback,

as well as the use of masking noise. I have used a Yamaha TX-81Z (available used for about $125).

Since output is simply sent to the “/dev/midi” device, it is possible that an internal computer

tone generator set to respond to writes to this device would work; this has not been tested. In

addition, some internal sound cards have been reported to have high latency.

Note that the millisecond accuracy and precision that I claim for FTAP includes the hardware

MIDI interface (which you will verify for yourself with the loop test), but does not included whatever

latency may be added by the MIDI input and output devices. My own sense is that a tone generator,

being purely electronic, will add little latency with a properly chosen, shart attack voice, but it would

be nice to get some external validation on this. At least one input device (the Roland HPD-15 drum

pad) has been shown to have at least 10 ms of internal latency. See the web page for the latest

available information.

D FTAP: Design and Implementation

This section contains some discussion of the implementation of FTAP; enough (hopefully) to explain

the diagnostics and benchmarking. See also Finney (2001b) and the “scip summary.text” file in the

“doc” directory for further discussion of real-time implementation; these will hopefully convince the

reader that FTAP runs with millisecond precision. If you’re really interested in the implementation,

the source itself is liberally commented (perhaps excessively so; I haven’t always had time to clean

up out-of-date comments).

Timing in FTAP (time stamping of input events, and scheduing of output events) is done at the

millisecond level using the Linux gettimeofday system call (which actually provides microsecond level

precision). If FTAP is running with root privileges, sched setscheduler and mlockall are used to get

real-time priority.

Because output may be asynchronous with input (e.g., when delay is used) FTAP uses an output

scheduling queue that contains an ordered list of scheduled output events (be they metronome or

feedback events), along with the time in which the event should be written out to the MIDI port.

This queue is normally checked at least once a millisecond, and any events scheduled at or before the

current time are then written out. Since it is theoretically possible for the output queue scheduler to

get delayed, the actual and the expected time are checked each time an event is written out; if the

current time is different from the expected time, this discrepancy is recorded. When the program

is completed, the maximum such discrepancy (as well as the mean) is written both to the screen,

and to the output file. If this number is larger than 2 milliseconds or so, you should probably be

46

concerned.

Similarly, MIDI input should be read from the input port at least once a millisecond. Time

stamping of a MIDI message is determined by the arrival of the first byte. If there is to be feedback

in response to the keystroke, it is written to the output scheduling queue (delayed if necessary).

The initial versions of FTAP (on SGI Irix) enforced such millisecond scheduling by using a

1 ms granularity asynchronous interrupt, but this is not provided on all systems. The current

implementation relies on fast CPU speed and high-priority scheduling, and simply does a loop (until

end of experiment) of:

ReadMidiEvent() ;

ProcOutput();

Although this is not provably guaranteed to give millisecond granularity, it does so in practice.

If there are problems, they will show up in the output diagnostics printed to the screen at the end of

a trial (and also printed to the output file). Since the high-priority scheduling of such a continuous

loop (e.g., when run as root with SCHED FIFO priority) can totally monopolize the machine (to

the point of not allowing FTAP to be interrupted by a keyboard interrupt, and requiring a system

reset), a .49 ms pause (implemented with “/dev/rtc”) is inserted on each loop, so that the mean

time between scheduler calls will tend to be .49 ms. If FTAP is run as a normal user, this pause

does not occur, so that the time between scheduler calls may in fact be much less (e.g., .01 ms).

E Sample Experiment Driver in Python

FTAP runs a single trial (potentially long and complex), but an experiment typically contains multi-

ple trials, often randomized, blocked, or counterbalanced. FTAP in such a research situation would

typically be run from a script of some sort which handles these higher level aspects. A shell script

could be used; I use the interpretive language Python, which is installed by default on some Linux

installations (e.g., RedHat), or can be downloaded from www.python.org. Python, as a genuine

programming language, is more powerful, elegant, and general than shell scripts, and I am told by

those who know that it is more flexible and comprehensible than scripting languages like Perl. I like

it a lot. See Lutz and Ascher (1999) for an introduction.

An example script in the Python language that I have used for running experiments is the

following. For this experiment, there are 11 delay conditions, each run at each of two rates (250 ms

or 400 ms); the parameter files names are constructed from a rate prefix and a delay suffix. A sample

parameter file name would be 250p 100, for 100 ms of delay at the 250 ms tapping rate. Trials are

blocked by rate, and the Python program handles the subject, block, and trial (override) parameters.

47

The program prompts for a parameter file prefix (encoding the rate), subject number, block number

(whether this rate is being run as the first or second block), and runs 3 trials of each condition, in

a random order. A break is given after 17 trials. All the experimenter has to do is hit <CR> when

prompted to do so.

#!/usr/bin/env python

Sample driver file in Python for an FTAP experiment

import os, whrandom, sys, string

print "\nEnter parameter file prefix: ",

line = sys.stdin.readline()

prefix = (string.split (line)) [0]

print "\nEnter subject ID: ",

line = sys.stdin.readline()

subject_id = (string.split (line)) [0]

print "\nEnter block number: ",

line = sys.stdin.readline()

block_id = (string.split (line)) [0]

List of all the conditions for this experiment (these are the

parameter files suffixes).

suffixes = ["_s", "_100", "_150", "_200", "_250", "_300", "_350",

"_400", "_450", "_500", "_550"]

source directory for parameter files

param_path = "/home/sf/texp10/params/"

start_trial = 1

trial_count = 3 # of trials in each condition

trial_break = 17 # give a break after 17 trials

create a list in which each suffix/condition occurs 3 times

suffixes = trial_count * suffixes

trial_num = start_trial

Create override parameters for FTAP invocation. Assumes that subject and

block will not change within a single run

sub_param = "SUB " + ‘subject_id‘

block_param = "BLOCK " + ‘block_id‘

48

while suffixes:

if trial_num == trial_break:

print "\nFIRST BREAK: Hit <CR> to continue.."

line = sys.stdin.readline() # experimenter can type anything

randomly choose a condition to run...

suffix = whrandom.choice (suffixes)

suffixes.remove (suffix)

construct the command line to execute...

file = param_path + prefix + suffix

trial_param = "TRIAL " + ‘trial_num‘

exec_line = "ftap " + file + " ’" + sub_param + " ’" + \

" ’" + trial_param + " ’" + " ’" + block_param + " ’"

print "\n\nHit <CR> to start trial %d, file %s" % (trial_num, file)

line = sys.stdin.readline() # experimenter can type anything

os.system (exec_line)

trial_num = trial_num + 1

F Interactive Mode

Interactive mode is an self-documenting (that is, largely undocumented) mode of FTAP that you

enter if you do not provide a parameter file name of the command line. It is not currently supported;

however, I haven’t disabled it, so here are the commands. It was once useful for learning FTAP and

exploring what parameters do, but you’re probably better off editting a test file in one window and

running FTAP from another window. Under no circumstances should you do serious data collection

this way! Interactive mode allows running multiple trials from one invocation of FTAP. However,

the system is not cleanly reset between trials; e.g., parameters which have been changed by triggers

will stay changed, and internal variables may also not get reset. Unless you convince me this is a

valuable facility, I will probably not respond to comments, questions, or bug reports on interactive

mode.

Commands:

1. f <PARAMFILE>: read in the parameters in the named parameter file.

2. p <PARAMSTR>: set a single parameter (e.g., “p FEED ON 1”).

3. t <TRIAL>: set the trial number.

49

4. q: quit FTAP.

5. r: run a trial with the current set of parameters.

6. l: list the current set of parameters.

G User Enhancements/Code Changes

FTAP provides a fixed set of delay and pitch mappings, which can be chosen by integer parameter

values. Additional pitch or delay mappings could be added following the structure of the routines

in “map.c”; this requires C code changes. Currently, there are not clean hooks that allow simple

linking in of such functions.

The necessary steps are.

1. Create a “#define ” for the new feedback mode in in “params.h”.

2. Create a new mapping routine modeled on the existing functions in “map.c”.

3. Add a “case:” statement in the appropriate “map.c” routine (pitchmap or delaymap) calling

your new mapping routine.

If you choose to make such a change, choose a PMODE or DMODE coding greater than 50 to

avoid conflict with future versions of FTAP. If you create a change you think might be generally

useful, let me know so I can consider including it in the distributed FTAP version.

For pitch mappings, the logical thing would be able to read mappings in from a file (similar to

the current SEQFILE stuff) so that no C coding and recompilation was required. This is not in the

current version of FTAP, and will require thinking about file formats for octave and whole keyboard

mappings.

H ‘playftap’ usage

”playftap” is a utility included in the FTAP distribution (see the “utils” and “bin” directories) for

“playing” FTAP output files (that is, hearing them as auditory/MIDI output). I have found this

useful for getting an intuitive sense of what went on in a trial; it is also good for creating audio

examples for presentations. ‘playftap” currently works on my system, but I make no guarantees for

you. The following is the documentation in the code header as of 9/4/00; there are a number of

options to choose exactly what will be sounded.

50

playftap.c: This is a playback program for FTAP output files, making

it possible to listen to the data files (including

things one didn’t hear when running the experiment, like the keystrokes

themselves!). Various aspects of what you hear can be specified by

command line arguments. It currently requires that the input file have

the .abs suffix created by FTAP. It defaults to playing keystrokes if

nothing else is specified.

This code has not been kept up to date, but should work. The accuracy

of the program argument descriptions needs to be verified.

USAGE: there are a bunch of command line arguments which allow choosing

exactly what to listen to. It will not be possible to listen to "junk"

events (masking noise), however, you may want to listen to trigger

events (to know where things changed). You may want to listen to

keystroke events, which on the original run did not (in and of

themselves) make any noise. This means that it may be necessary to

allow specifying MIDI channel for keystokes, since the input keystroke

value may not be suitable for the tone generator.

playftap usage is as follows, where all arguments (except filename)

are optional. This program currently only plays one file at

a time.

playftap -kmft -R<ratio> -T<tchan> -U<tnote> -C<keystrokechan>

-K<keystrokeadd> -S<startpoint> filename

The "k", "m", "f", and "t" turn on playback of keystrokes, metronome,

feedback, and trigger events respectively; you can play these

simultaneously in any combination. Since trigger events in the

file don’t have a MIDI channel or note, the "T" and "U" arguments

allow overriding the built-in defaults of 1 and 120 for channel and

note, respectively. (The sounding time of 75 ms and velocity of

100 for trigger playback are hardwired).

Since keyboard midi channel input doesn’t necessarily correspond to a

reasonable sound, "C" allows overriding the MIDI channel in the

input file (perhaps a note should be added, at least for tapping

(vs musical) experiments). The "K" flag provides a value you

can add to keystroke velocity values (to make them louder); its use

automatically turns on keystroke audio ouptut. The "S" flag

allows for a millisecond time (from file start) for when playback

of the file should begin. The "R" flag allows for altering the

rate of playback (slowing down is sometimes useful); 2.0 will play

at half speed, .5 will play at double speed.

51

52

