
FTAP: A Linux-based program for tapping and music experiments

Reference Manual

Version 2.1.05

c©2001

Steven A. Finney

November 1, 2001

1

Contents

1 Introduction 5

2 Installation: Initial Use and Evaluation 6

2.1 Distribution and Installation . 6

2.2 Computer and Operating System . 6

2.3 MIDI and Devices . 7

2.4 Demo Files . 7

2.5 It Doesn’t Work! . 7

3 Usage 7

4 Parameters 9

4.1 Input File Format . 9

4.2 Complete Parameter Listing . 9

4.2.1 Integer Parameters . 10

4.2.2 String Parameters . 10

4.2.3 Array Parameters . 11

4.2.4 Output-only Values . 11

4.3 Integer Parameters . 12

4.3.1 Feedback Parameters . 12

4.3.2 Second Feedback Channel . 14

4.3.3 Masking Parameters . 15

4.3.4 Metronome Parameters . 16

4.3.5 Miscellaneous Integer Parameters . 16

4.4 String Parameters . 17

4.5 Array Parameters . 18

4.5.1 Polyrhythmic Pacing Example . 19

4.6 Triggers . 20

4.7 Parameter Subtleties and Complexities . 20

4.7.1 Triggers . 20

4.7.2 Feedback Channels . 21

2

5 Sample Parameter Files 23

5.1 demo/keythru . 23

5.2 Modified “keythru” . 23

5.3 sample experiments/aschersleben . 24

5.4 sample experiments/finn 99 275 . 25

5.5 Split keyboard . 26

6 Important Program Limits 26

7 Output File Format 27

7.1 Comment Lines, Parameters, and Output Diagnostics 28

7.2 Data Line Format . 29

7.3 Note Data . 30

7.4 MIDI Controller Data . 31

7.5 Trigger Events . 32

7.6 MIDI Hardware Errors . 32

7.7 Data Filtering And Transformations . 33

8 Troubleshooting 33

8.1 FTAP isn’t working at all! . 33

8.2 FTAP isn’t doing what I think it should! . 34

8.3 Quirks/Bugs/Features . 34

9 Installation: Millisecond-resolution Data Collection 35

9.1 Root Privileges . 35

9.2 General Concerns . 36

9.3 Hardware and Linux Configuration Issues . 37

9.3.1 Car(d)s and Drivers . 37

9.4 Tested Card/Driver List . 38

9.4.1 Success . 38

9.4.2 Failure . 38

9.5 On-line Diagnostics . 38

9.6 MIDI Throughput Benchmarking . 39

A Revision History 40

3

B Distribution 41

B.1 bin . 41

B.2 doc . 42

B.3 params . 42

B.4 src . 42

B.5 utils . 42

C Linux OS Configuration Issues 42

C.1 OS Versions . 43

C.2 Drivers . 43

C.3 Hardware and MIDI cards . 44

C.4 Compilation . 44

D MIDI 44

D.1 MIDI Data Stream . 44

D.2 MIDI Input Devices . 45

D.3 MIDI Output Stream . 46

D.4 MIDI Output and Output Devices . 46

E FTAP: Design and Implementation 47

F Sample Experiment Driver in Python 48

G Interactive Mode 50

H User Enhancements/Code Changes 51

I ‘playftap’ usage 51

4

1 Introduction

FTAP is a Linux program for running a variety of psychology experiments with verified millisecond-

resolution data collection.1 It allows manipulation of auditory feedback in response to a user’s key

presses using MIDI devices for input and output. You are currently reading the Reference Manual,

which assumes that you have read either the User’s Guide or the article on FTAP in Behavior

Research Methods, Instruments, and Computers (Finney, 2001a). That is, I will assume that you

already understand the purpose and overall design of FTAP. In addition, it will be helpful if you

have some knowledge of Linux/UNIX and that you know what MIDI is, as I cannot provide extensive

background information in these areas. If you think that FTAP might be useful to you but you know

nothing about Linux, you may need to seek outside assistance. (FTAP has been written for Linux

because it’s what I know how to program; if you want to port it to a different OS, you are free to do

so, under the confines of the GNU license. Please contact me if you plan to do this.)

FTAP is provided in source code form at no charge (but without warranty) under the GNU

Public License agreement. My understanding is that the GNU license allows you to use and modify

the software in any way you like for “personal” use, but that any further distribution of the modifed

software must be done in source code form under the GNU license agreement. My intent is that

FTAP be available for unlimited use and modification; you can download the FTAP distribution

from http://csml.som.ohio-state.edu/ftap. If you have comments, bug reports, bug fixes, enhance-

ment requests, or coded enhancements, I would like to know so that I can deal with them and/or

choose to incorporate them into the standard version of FTAP. Send comments and questions to

sf@csml.som.ohio-state.edu.

NOTE: I am confident enough in this program that it has been my main system for data collection

for the last 4 years or so. I have tested it extensively and it is the subject of various talks and writeups

for publication. However, as of this writing it has received serious use from only a few other people,

so it should perhaps best be viewed as a “beta” version. If you think it might be useful, try it out and
1FTAP began as a program I wrote for an SGI Indigo which I used for my research as a graduate student at Brown

University. I thank Jim Anderson, David Ascher, Peter Eimas, Mike Tarr, and Bill Warren for their assistance during

this time. The port to Linux and many important enhancements were completed during a post-doctoral fellowship at

OSU; I thank Caroline Palmer, Pete Pfordresher, and Shane Ruland for their assistance. I’d also like to thank David

Huron and Doug Reeder for providing a web home for FTAP at http://csml.som.oho-state.edu/ftap .

In addition, some other people have actually started using FTAP! Thanks to Grant Baldwin, Zeb Highben, and

Anna-Lisa Ventola of Caroline Palmer’s lab, and special thanks to Saul Sternberg for helpful comments and for being

the first brave soul to install and use FTAP on his own.

Steve should be reachable at either sf@sfinney.com or sf@csml.som.ohio-state.edu.

5

let me know what you think. Although the documentation (this Reference Manual and the User’s

Guide) should be both accurate and complete, the organization and writing still need a fair amount

of work. Preparation for public distribution (e.g., adequate documentation) has been a large task,

and often has to take second place to my actual research.

Please cite Finney (2001a) in the writeup of any research you do that uses FTAP.

2 Installation: Initial Use and Evaluation

This section will attempt to provide the minimal information you need to be able to work (or play)

with FTAP on a Pentium-based Linux system. With this setup, FTAP should will work fine, but data

collection times may be a significant number of milliseconds off (unless you’re on a very heavily loaded

machine, this is not likely to be perceptible). If you decide to use FTAP for millisecond-resolution

data collection, there are a number of additional concerns; see Section 9.

2.1 Distribution and Installation

The distribution (as downloaded from the web site) is in ‘gzip’ed and ‘tar’ed format. Run ‘gunzip’

on the downloaded file, and then extract the directory hierarchy using ‘tar’. You will now have a

subdirectory named ‘ftap2.1.05’ (or something close to that). Look at the RELEASE NOTES file,

and then put the ‘bin/ftap’ binary somewhere where you can execute it (e.g., in your personal ‘bin’

directory). There are no auxiliary files. If FTAP will be used by multiple users on your system, you

might want to put it somewhere like ‘/usr/local/bin’, but at that point you’ll probably also want to

recompile it from the provided source code and make it ‘setuid root’ (see Section 9).

2.2 Computer and Operating System

I have run FTAP on a couple of different Pentium boxes (200 MHz and up), running RedHat

distributions 5.2, 6.1, 6.2, and 7.0. (2.0 and 2.2 Linux kernels). FTAP has also been run (but not

successfully compiled) on a Mandrake 8.0 distribution with a 2.4 kernel. The provided binary should

work on most Intel-based Linux systems. It might even work if recompiled on a totally different

architecture; let me know what happens if you try this.

See Appendix C for additional information.

6

2.3 MIDI and Devices

FTAP uses MIDI for both data collection and (auditory) stimulus presentation, so you need a

MIDI hardware interface of some kind with both an input and output port, and an installed Linux

driver for that interface (in fact, currently the commercial MIDI driver from 4Front technologies

(http://www.4front-tech.com) appears to be required; see Section C.2). FTAP accesses the raw

MIDI stream using the device “/dev/midi”. Next, you will need a MIDI keyboard for input and a

MIDI tone generator for output. To run the demonstration files, you should set both of the devices

to transmit/respond on MIDI channel 1. If you have a keyboard which allows you to turn off MIDI

LOCAL mode, you can use that keyboard for both input and output if you disable LOCAL mode. If

you have no external tone generator, but have a MIDI sound card, I have no idea what will happen.

Let me know.

There are a number of details regarding the MIDI output generated by different keyboards, and

the behavior of different card/driver combinations which are covered in later sections (e.g., Section

9 and Appendix D). If you’re lucky, you won’t need those details yet.

2.4 Demo Files

The ‘params’ subdirectory contains a number of sample parameter files; you should just try executing

some of the ones in ‘demo’ and ‘sample experiments”. For instance, in the “params/demo” directory

the following command should sound a patterned sequence:

ftap metronpat3

2.5 It Doesn’t Work!

If you have followed the above directions, and are the sort of person who always buys winning lottery

tickets, then FTAP should be working beautifully. If that is not the case, look at later sections of

this manual (e.g., Sections 8 and Appendix D) and try to figure out what’s going on. If you can’t

figure it out after making a good faith effort, send me email.

3 Usage

FTAP is invoked as follows:

ftap <paramfile> [param_override*]

7

The optional parameter override(s) allows for parameter specifications which take precedence over

parameter specifications in the input file. The most common use of overrides is for specifying things

like subject ID or trial sequence number, which are really not part of the experiment description

per se and thus don’t belong in the parameter file.2 A parameter override must be in double quotes

so that the Linux shell passes it to FTAP as a single argument, e.g. “SUB 1” or “NRDELAYS 4

10 20 30 2000”. In actual data collection use, FTAP would normally be invoked with 3 parameter

overrides, for subject (SUB), trial (TRIAL), and block (BLOCK). The parameter file name, subject,

trial, and block are all (obligatorily) encoded in the output file name. FTAP will happily overwrite

an existing output file without giving any warning.

An invocation of FTAP in an actual experiment might thus be the following; the resulting output

file would be named “250p 250.1.2.7.abs”:

ftap 250p_250 "SUB 1" "BLOCK 2" "TRIAL 7"

A run of FTAP may be terminated by typing Ctrl-C (or the equivalent keyboard interrupt

character on your system).

When FTAP starts, it will print “Running as normal user” if you are running it without having

done any special configuration. If you have set it up for real data collection (see Section 9), it

will print “Running with realtime privileges”. When FTAP terminates, it will print out a timing

diagnostic like the following:

Mean time between sched()’s (ms): 0.01, schedcnt: 194077

> 1 ms: 1, > 5 ms: 0, > 10 ms: 0, max: 2 ms

This output is significant if you are doing real-time data collection, and it will be explained

further in Section 9.5. It provides information about FTAP’s internal timing on this run.

In research use, it may be best to run FTAP from a script that keeps track of trial numbers

and parameter file locations, and that takes care of trial randomization. Appendix F contains an

example of such a script in the Python language.

If FTAP is invoked with no arguments, it will enter an interactive mode, which allows running

parameter files, changing parameters, etc. This mode was once useful for investigating FTAP, but is

no longer supported. If you insist, see Appendix G.
2Overrides could also be used for using a single parameter file for a range of experiments in which only one value is

changed (e.g., delay time), but it’s really just as easy (and probably safer) to make separate parameter files for each

condition.

8

4 Parameters

An FTAP trial is specified by a text file which lists parameters describing the experiment. A pa-

rameter is a user-settable value that controls some aspect of FTAP’s behavior. Parameters are of

three types, depending on the data value: integer, string, or array (of integers). In addition, triggers

(which changes the value of an integer parameter value during the course of a trial) are also specified

in the input file. The important parameter values for an experiment are listed in the output file; see

Section 7.

4.1 Input File Format

The input parameter file is a simple text file containing parameter specifications. Any lines beginning

with the ‘# ’ comment character, or with a white space character, will be ignored. The format for

a parameter specification is

<parameter name> <value>

This is also the format of override parameters, which are the easiest way to specify subject,

trial, and block (see Section 3). If the value for a parameter is not specified by a user, a default

value (documented in the following sections) will be used; this will usually lead to a rational level

of inaction. If a parameter is important to your experiment, you should explicitly specify it rather

than relying on the default. Additional documentation on FTAP parameters may be found in the

source files “params.c” and “params.h”.

A sample parameter file is provided in the User’s Guide, and additional examples are provided

in the ‘params’ directory of the distribution and in Section 5 of this Reference Manual. Looking at

(and running and modifying) these files is one of the best ways to see how FTAP works.

4.2 Complete Parameter Listing

This section lists all of the parameters specifiable in an input file, including the default value if the

user does not specify a value, and whether the parameter value will be printed by default to the

output file. Parameters set by a user in a parameter file will always be listed in the output file, and

setting the FULL PARAM PRINT parameter to 1 will cause all parameters can be printed to the

output file. Any parameters not listed in the output file can be assumed to be set to the default

values listed below.

The function of each parameter is explained in subsequent sections.

9

4.2.1 Integer Parameters

The following parameters take a single, non-negative integer as a value.

Name Default Value Default Print

FEED_ON 1 Yes
FEED_CHAN 1 Yes
FEED_LEN 0 Yes
FEED_PMODE 0 Yes
FEED_NOTE 96 Yes
FEED_DMODE 0 Yes
FEED_DVAL 250 Yes
FEED_VMODE 0 Yes
FEED_VEL 0 Yes
FEED2_ON 0 No
FEED2_CHAN 1 No
FEED2_LEN 20 No
FEED2_PMODE 0 No
FEED2_NOTE 80 No
FEED2_DMODE 1 No
FEED2_DVAL 250 No
FEED2_VMODE 0 No
FEED2_VEL 100 No
SPLIT_POINT 64 No
PITCHLAG 0 No
MASK_ON 0 Yes
MASK_CHAN 2 No
MASK_NOTE 64 No
MASK_VEL 35 No
METRON_ON 0 Yes
MET_CHAN 1 Yes
MET_NOTE 64 Yes
MET_VEL 100 Yes
MET_LEN 20 Yes
MSPB 600 Yes
STDOUT 0 No
CLICK1_OFFSET 0 No
CLICK2_OFFSET 0 No
FULL_PARAM_PRINT 0 Yes

4.2.2 String Parameters

The following parameters take a character string as a value. Although double quotes are used here

for clarity, these quotes should not be used in the input file.

10

Name Default Value Default Print

SUB "sub" Yes
BLOCK "block" Yes
TRIAL "trial" Yes
COMMENT "" No
CLICK1_FILE "" No
CLICK2_FILE "" No
PITCHSEQ_FILE "" No

4.2.3 Array Parameters

The following parameters take an array of integers as a value. The first field is the array length, which

is followed by the elements themselves. The default for all of these is an empty list (0 elements).

Name Default Value Default Print

RANDDELAY_ARRAY 0 No
MET_PATTERN_ARRAY 0 No
MET_VEL_ARRAY 0 No
MET_NOTE_ARRAY 0 No
MET_CHAN_ARRAY 0 No
MET_LEN_ARRAY 0 No

4.2.4 Output-only Values

In addition to the parameters which control how FTAP behaves, there are also certain diagnostic

values that FTAP writes to the output file; these are listed below. These cannot be specified by the

user. The diagnostic timing values are described in Section 7.1.

Name Default Value Default Print

TIME --- Yes
VERSION_NUMBER --- Yes
PARAMETER_FILE --- Yes
AV_DELAY --- No
SCHED_AV --- Yes
SCHED_MAX --- Yes
SCHED_MAXTIME --- Yes
SCHED_GT1 --- Yes
SCHED_GT5 --- Yes
SCHED_GT10 --- Yes
IN_DISC_MAX --- No
IN_DISC_MAX_TIME --- No
OUT_DISC_AV --- No

11

OUT_DISC_MAX --- No
OUT_DISC_MAX_TIME --- No
MIDI_ERROR --- Yes

4.3 Integer Parameters

Integer parameters take a single non-negative integer as value. In some cases, this will be the values

0 and 1, for ‘off’ and ‘on’ respectively. For the feedback parameters FEED CHAN, FEED VEL,

FEED PMODE, FEED DMODE, and FEED VMODE, a value of 0 means that the input keystroke

values will be echoed in the output, while a non-zero value means that there will be some alteration.

Integer parameters (only!) are the ones which can be changed during the course of an experiment

by trigger events.

4.3.1 Feedback Parameters

These parameters specify characteristics for feedback to a subject’s keystrokes. A second feedback

channel is handled by FEED2 equivalents to the FEED parameters documented here; see the dis-

cussion in Section 4.7.2. Most experiments will not require the second feedback channel.

Certain parameters are dependent on other parameters. For example, if FEED ON is set to zero,

none of the other feedback parameters will have an effect.

Most of these mapping characteristics are independent and can be freely manipulated and com-

bined. Extension of mapping modes beyond what is provided here can only be done by modifications

to the C source code, but this is fairly straightforward (see Appendix H).

1. FEED ON: If set to 0, there will be no auditory feedback, that is, no MIDI output in response

to keystrokes, and hence no sound. If set to 1, feedback is turned on. Values of 2 and 3 relate

to the use of multiple feedback channels and a keyboard split; see Section 4.7.2. [Default: 1]

2. FEED CHAN: The MIDI channel to be used for feedback: 0 means the input value from

keystrokes will be unchanged, while values from 1-16 will send the feedback out on the specified

MIDI channel. MIDI channel control allows specification of different sounds with a polytimbral

tone generator. [Default: 1]

3. FEED LEN: The length (in milliseconds) of the feedback tone. A value of 0 means that the

user’s key down and key up times are followed (sound will occur for a duration equal to the

time the key is held down). A non-zero value means that the feedback will sound for that

12

number of milliseconds. When a non-zero length is used, both the NoteOn and NoteOff output

events will be scheduled at time of keypress. [Default: 0]

4. FEED PMODE: Pitch-mapping types. These must be specified as integers in the parameter file,

but are provided here along with their internal designation for convenience (see “params.h”).

Note that the SEQ and LAG values may cause awkward interactions if the second feedback

channel is being used (see Section 8.3): [Default: 0]

(a) 0 (RIGHTPITCH): Output pitch value is same as the keystroke input pitch.

(b) 1 (SAMEPITCH): Output pitch is fixed as FEED NOTE, regardless of input keystroke

value.

(c) 2 (REVPITCH) : Reversed pitch, low notes at right end of keyboard.

(d) 3 (LARGEPITCH) : A semi-random (but consistent, i.e., each note is always mapped to

the same pitch) pitch mapping. Each note will receive a pitch alteration (in semitones)

according to the following list: C:+6, Db:-2, D:+3, Eb:0, E:+15, F:-6, Gb:0, G:+1, Ab:-5,

A: +1, Bb:+2, B:0. (See Finney (1997) for an example use of this.)

(e) 4 (RANDPITCH) : Another semi-random pitch mapping, but one that is not consistent

(hitting the same key twice in succession will give different notes). Each played note will

receive a semitone alteration randomly selected from the range of a 5th below to a 5th

above the input note. NOTE: if FEED NOTE is set to a non-zero value (as is currently

the default), the output notes will range from a 5th below to a 5th above that note,

regardless of input keystroke. Setting FEED NOTE to 0 will cause the output note to

randomly vary centered on the keystroke note. If this description makes no sense, try it

out!

(f) 5 (SEQPITCH) : A fixed pitch mapping. Each succeeding keystroke (regardless of key)

will play the next note from a fixed sequence, specified by the user in a pitch sequence

file (see the SEQPITCH FILE string parameter). Great for non-musicians, as they can

play a melody correctly no matter what keys they hit (see the “bachpitch” file in the

“params/demo” directory).

(g) 7 (LAGPITCH) : Play the pitch from PITCHLAG notes preceding the current note, but

with velocity and timing values taken from the current keystroke. At the beginning of a

trial, when there are no preceding notes to use, the FEED NOTE value is used. If silence

(or the actual keystroke values) would be preferable in this case, just use keystroke triggers

13

and the FEED ON or FEED PMODE parameter appropriately. (See Pfordresher (2001)

and other work by P. Pfordresher and C. Palmer for use of this mode.)

5. FEED NOTE: If FEED PMODE is set to 1 (fixed pitch value in response to any keystroke),

this value specifies what note to use for feedback (from 1-128). FEED NOTE also affects

behavior if FEED PMODE is set to 4 (randomized pitch); see above. [Default: 96]

6. FEED DMODE: Delay mapping types. These must be specified as integers in the parameter

file, but are provided here along with their internal designation (see “params.h”) for conve-

nience. When a note is delayed, the duration of the note is unaffected, i.e., both the NoteOn

and the NoteOff events for a note will be delayed by the same amount. [Default: 0]

(a) 0 (SYNC DELAY): No delay; feedback is synchronous with keystrokes.

(b) 1 (FIXED DELAY): Fixed delay, all keystrokes delayed by FEED DVAL milliseconds.

(c) 2 (RAND DELAY): Randomly (for each keystroke) select a delay from RANDDELAYS ARRAY

(see Section 4.5).

(d) 3 (UNIFORM DELAY): The delay (for each keystroke) is chosen from a uniform distri-

bution between 100 and 300 ms.

7. FEED DVAL: The amount of delay (in milliseconds) if FEED DMODE = 1. [Default: 250]

8. PITCHLAG: If FEED PMODE is 7, PITCHLAG specifies the number of notes back from

which the pitch value will be taken. [Default: 0]

9. FEED VMODE: When set to 0, the velocity value for feedback messages will be the same as

the input keystroke. When set to 1, the velocity on output will be fixed, and specified by

FEED VAL. There are also some preliminary velocity mappings: a value of 2 (REV VEL)

will cause harder keystrokes to give a softer sound, while a value of 3 (RAND VEL) will give

randomized loudness to each keystroke. [Default: 0]

10. FEED VEL: If FEED VMODE is set to 1, this specifies the fixed MIDI velocity value to use

for feedback. [Default: 0]

4.3.2 Second Feedback Channel

A second feedback channel3 is provided which can either provide a second feedback tone for a

given keystroke (e.g., one synchronous tone and one delayed tone), or can provide different feedback
3The choice of the term “channel” is perhaps unfortunate, as this is totally independent of MIDI channel.

14

responses in different parts of the keyboard (such a keyboard split might be interesting for two finger

polyrhythmic tapping experiments). Examples are in the “params/demo” directory (the “twochan”

and “splitchan” files). The parameter names for the second feedback channel begin with “FEED2”;

they behave exactly like the “FEED” equivalents, but have different default values (see Section 4.2).

The defaults specify a fixed length, pitch, and velocity tone which is delayed by 250 ms, but the

FEED2 ON parameter defaults to 0 (no sound).

Use of the FEED2 channel to provide a second feedback tone to a keystroke is simple; just set

the FEED2 parameters to the feedback response you want, and set both FEED ON and FEED2 ON

to 1.

To provide different responses in different parts of the keyboard, it is necessary to use the

SPLIT POINT parameter, and specific settings for the FEED*ON parameters. SPLIT POINT de-

fines the splitting point on the keyboard (e.g., 60 for C4). If FEED ON is set to 2, the response for

the main feedback channel will occur for keystrokes with note values greater than or equal to the

split point, while if FEED ON is set to 3, the feedback response will occur for keystrokes below the

split point. FEED2 ON is set in the same way. So, e.g., set SPLIT POINT to 60, FEED ON to 2,

and FEED2 ON to 3 so that the FEED * parameters define the feedback response for keystrokes on

the right side of the keyboard, and the FEED2 * parameters define the response on the left side of

the keyboard.

There are some limitations on the use of multiple feedback channels; see Section 4.7.2.

4.3.3 Masking Parameters

FTAP provides the ability to output masking noise for the duration of a trial that is, a MIDI note

which stays on for the duration of a trial. MASK ON only takes effect at trial beginning, and would

typically be used with a tone generator that generates some approximation to white noise. MIDI

channel, note, and velocity can be specified. Trigger events do not affect masking noise.

1. MASK ON [Default: 0]

2. MASK CHAN [Default: 2]

3. MASK NOTE [Default: 64]

4. MASK VEL [Default: 35]

15

4.3.4 Metronome Parameters

FTAP’s metronome provides a flexible form of pacing tone. The integer parameters provide for an

isochronous beat, while array parameters (see Section 4.5) can impose different types of structure

on the tone sequence. If an array parameter is specified, it will override the corresponding integer

parameter. The actual characteristics of the sound will depend on the tone generator used; all FTAP

does is make sure that MIDI NoteOn and NoteOff messages go out at the right time.

The metronome parameters can be changed by triggers, altering the metronome behavior on the

fly. A metronome trigger will affect the tone produced on the specified beat (but not the MSPB

preceding that beat). One use for such triggers would be perturbing a stimulus sequence in a

sychronization experiment.

1. METRON ON: 1 if the metronome beat should be sounded, 0 if not. [Default: 0]

2. MET CHAN: MIDI channel for the metronome. [Default: 1]

3. MET NOTE: MIDI note value for the metronome. [Default: 64]

4. MET VEL: MIDI velocity for the metronome. [Default: 100]

5. MET LEN: Length (in milliseconds) of the metronome beat. [Default: 20]

6. MSPB: Length (in milliseconds) between beats. [Default: 600]

4.3.5 Miscellaneous Integer Parameters

1. CLICK1 OFFSET, CLICK2 OFFSET: if click files (see below) are being used, this is the offset

(in milliseconds) from trial start at which the click file will be played. Up to 2 click files are

available. These offset parameters are useful in allowing a single set of pre-programmed events

to be used at different positions or “phases”. There can be two click files, and each one can be

offset by a certain amount. [Default: 0]

2. STDOUT: If set to 1, FTAP output will go to the video screen rather than to a text file. Only

keystrokes will be displayed. This may be useful for long practice or test sessions where you

don’t need the data recorded, as it keeps input data structures where the information is stored

from overflowing (FTAP normally does not write any data to disk while a trial is running; it

is kept in memory). However, since the internal data structues now hold about 7500 notes (set

to 15,000 in “ftaplimits.h”, where each note involves a NoteOn and a NoteOff), it really isn’t

likely to be necessary. No longer supported, but probably works. [Default: 0]

16

3. FULL PARAM PRINT: Print out all parameters in the output file, rather than just the default

subset. With this parameter set to 0, the output file header will only include the “obligatory”

parameter printout (see Section 4.2) plus any user-specified parameters, and will be about 30

lines long. If FULL PARAM PRINT is set to 1, the header will be about 60 lines. If you are

debugging a parameter file that doesn’t work as you expect, I suggest setting this to 1 so you

know exactly what you’re getting (I will insist on this if you ask me to troubleshoot a problem).

[Default: 0]

4.4 String Parameters

Some parameters take string values; these are typically file names or documentation strings. Double

quotes, although used below, should not be used in the parameter file itself.

The first 3 of the following parameters are values which identify some aspect of the current

experimental run; they are also used to form the output file name

1. SUB: subject id. [Default: “sub”]

2. BLOCK: trial block. [Default: “block”]

3. TRIAL: trial number. [Default: “trial”]

4. COMMENT: A single comment line which will go in the output file. [Default: “ ”]

5. CLICK1 FILE, CLICK2 FILE: names of up to two pre-existing files of data that will be played

during the trial. These files must be in the same format as the FTAP output file (i.e., 8

columns, though not all columns are actually used), and the event type must be specified as

‘F’(eedback) or ‘M’(etronome) (other event types, including ‘K’, will be ignored and will cause

an error message). Click events will be written to the output file; the ‘F’ or ‘M’ specification

will be preserved. The easiest way to generate such files may be to either record a performance

using FTAP, or generate an output file using the FTAP metronome. Offsets may be specified

by the CLICKN OFFSET parameters. The file names are interpreted relative to the directory

containing the parameter file. See params/sample experiments/finn 99 fixed for an example.

Note that this is a fairly simplistic playing mechanism that is not really designed for presenta-

tion of complex musical stimuli. [Default: “ ”]

6. PITCHSEQ FILE: if FEED PMODE is set to 5, then this file contains a list of integers (1 per

line) specifying the sequence of notes to be played in response to successive keystrokes. The

17

sequence will repeat when the end is reached. See ‘params/demo/bachpitch’ for an example.

The file name is interpreted relative to the directory containing the parameter file. [Default: “

”]

4.5 Array Parameters

Array parameters are used when there is a list of (integer) values. The format for an array parameter

involves first specifying the number of elements (‘count’), and then the elements themselves. The

number of elements must be at least as large as ‘count’, and only the first ‘count’ elements will be

used. All array parameters default to a count of 0. The maximum length of the random delay list is

10, and the maximum length of the metronome cycle is 20.

1. RANDDELAY ARRAY: Used in conjunction with FEED DMODE = 2, this allows for a form

of random delay. Up to 10 delay values can be specified, and the delay for each keystroke will

be randomly selected from the set. The following specification will randomly choose among

100, 200, or 300 ms delays.

RANDDELAY_ARRAY 3 100 200 300

2. MET PATTERN ARRAY: This allows specification of a pattern on top of the underlying

metronome beat (that is, a pattern of sounded and silent beats). The maximum length is 20

beats. The following line will sound a cycle of 3 beats, followed by a pause (where the rate and

tone characteristics will be determined by the integer metronome parameters).

MET_PATTERN_ARRAY 4 1 1 1 0

3. MET VEL ARRAY: This allows imposing a loudness (MIDI velocity) pattern on the metronome

sequence. The following will make the first of every 4 beats louder than the other 3.

MET_VEL_ARRAY 4 110 80 80 80

4. MET CHAN ARRAY: This allows creating a pattern of changing timbres on the metronome

sequence by specifying the output MIDI channel for each beat (this assumes a polytimbral

tone generator). The following lines will give different sounds for the 1st and 2nd tones of a

two beat pattern, depending on how the tone generator is programmed to respond on MIDI

channels 1 and 2.

18

MET_CHAN_ARRAY 2 1 2

5. MET LEN ARRAY: This allows imposing a pattern of tone length on the metronome sequence.

The following would place a longer tone (agogic accent) every 3 beats in an isochronous se-

quence.

MET_LEN_ARRAY 3 150 80 80

6. MET NOTE ARRAY: This allows imposing a pitch pattern on the metronome sequence. The

following line will repeat an ascending C-major scale.

MET_NOTE_ARRAY 8 60 62 64 65 67 69 71 72

If a metronome array parameter is specified, it will override the equivalent integer parameter. If

multiple metronome array parameters are used (e.g., both velocity and length), they would typically

all be of the same length (as in the following polyrhythm example), but this is not required by FTAP

(see, e.g., the “metronpat3” file in the “params/demo” directory).

4.5.1 Polyrhythmic Pacing Example

The following parameters would provide a 3 vs 4 polyrhthmic pacing signal, with the 4 part of the

signal distinguished by a higher pitch. Unfortunately, FTAP does not permit playing more than one

pitch at the joint accent, so this is played by a third pitch, and stressed by length.4 Although this

example is a little complicated, once it is set up it is possible to change the tempo simply by altering

the MSPB parameter.

METRON_ON 1
MSPB 200
MET_VEL 90
MET_PATTERN_ARRAY 12 1 0 0 1 1 0 1 0 1 1 0 0
MET_NOTE_ARRAY 12 79 0 0 84 72 0 84 0 72 84 0 0
MET_LEN_ARRAY 12 120 40 40 40 40 40 40 40 40 40 40 40

4It might be possible to do some messy manipulations using triggers and the MSPB parameter (making the time

between the first two tones in the cycle effectively simultanous by setting MSPB to 1 millisecond) to simulate multiple

(effectively) simultaneous tones. Also, using the MET CHAN ARRAY parameter in conjunction with clever program-

ming of a polytimbral and stereo tone generator might allow better handling of the joint beat, as well as possible left

ear/right ear separation of the components of the pacing signal.

19

4.6 Triggers

A trigger event is a metronome beat, keystroke number, or elapsed time which causes an immediate

change in an integer-valued parameter5. Triggers are specified by the keyword “TRIGGER”, followed

by 5 obligatory fields. The first field following the word “TRIGGER” is a unique trigger ID (for

identification in the output file), followed by the trigger type: K(eystroke), T(ime), or M(etronome).

The fourth field is the count for the trigger (elapsed milliseconds for time triggers, keystroke number

for keystroke triggers, and metronome count for metronome triggers), and the next two fields are the

name of the integer parameter to change and the new value. A special pseudo-parameter “END EXP”

can be used in a trigger specification to terminate an experiment; it is followed by an arbitrary (but

obligatory) integer. An unparseable or incorrect trigger specification will print a message to the

screen; if your experiment isn’t working correctly, check this. The first trigger specification below

will turn the metronome off on the 10th beat, the second will cause the 6th (and all following)

keystrokes to sound with a delay of 300 ms (assuming FEED DMODE is set to 1), and the third

specification will end the experiment after 15 seconds. Both keystroke and metronome triggers

affect the triggering event itself; however, for the metronome the preceding MSPB has already been

processed, so a metronome trigger that changes MSPB will affect the following metronome pulse.

TRIGGER 1 M 10 METRON_ON 0

TRIGGER 7 K 6 FEED_DVAL 300

TRIGGER 3 T 15000 END_EXP 1

Metronome triggers are counted based on the underlying beat, whether it is sounded or not, with

the first such logical beat starting MSPB milliseconds after trial start, and a logical beat every MSPB

milliseconds later. Metronome triggers are counted on this logical beat basis, regardless of the value

of METRON ON or MET PATTERN LEN.

4.7 Parameter Subtleties and Complexities

This section discusses some fine points of FTAP parameter usage.

4.7.1 Triggers

A somewhat minor feature of triggers may cause problems for a careless user (such as me). The

trigger ID (the second field in the specification) currently serves no purpose other than marking
5There are a few special case instances where this will not work, e.g., integer parameters which only have an effect

at trial start such as MASK ON and STDOUT

20

trigger events in the output data file (i.e., it plays no role in sequencing). However, a second trigger

with the same ID will erase a previous one. A warning message will be written if this occurs.

In FTAP version 2.1.03, there was a problem if a trigger which affected a feedback parameter

occurred between a keystroke down and the corresponding key release (e.g., if a change of FEED ON

from 1 to 0 occurred, the NoteOff was not sent and the note would not terminate). One suggested

workaround was to used fixed length output (FEED LEN != 0), since in this case NoteOn and

NoteOff messages are always scheduled together. This has been fixed in 2.1.05; all relevant feedback

parameter values are saved when a key is pressed, and those values are used when that key is released

(even if the value has been changed in the meantime). This has not been tested as thoroughly as

I would like (particularly with respect to multiple feedback channels), but no one has reported any

problems.

4.7.2 Feedback Channels

The second feedback “channel” was originally introduced into FTAP to handle experiments with both

synchronous and delayed feedback in response to a single keystroke, including the ability to flexibly

manipulate volume levels for each of the two feedback output events. It was then simple enough

(from an implementation perspective) to extend this to allow two totally independent responses

for a keystroke (e.g., synchronous and pitch mapped feedback combined with delayed and isotonal

feedback), and then a further simple step to allow applying one or the other of those two feedback

responses to different parts of a logically split keyboard , allowing different responses to different

fingers or hands (e.g, one delay value above middle C, a different one below middle C). The resulting

parameters are fairly simple, but the additions are not always fully integrated, and contain some

pitfalls if not used carefully. Note that feedback “channel” here should not be confused with MIDI

channel (which is completely separate); in addition, a feedback “channel” may be polyphonic. In

addition, keyboard splitting relates to, but is also somewhat distinct from, the use of multiple

feedback channels.

The particular issue is that a number of variables in the system are not factored out into the two

channel scheme because it hasn’t been worth the extra complexity. For example, there is only one

RANDDELAY ARRAY variable, so it is not (currently) possible to have independent random delays

on the two channels. Also, MIDI controller input (e.g., pedals, pitch bend) will always be delayed

based on the FEED DMODE parameter.

The following facilities will work fine if only one feedback channel is configured for the given ca-

pability (you can still use the second channel, it just must be programmed with a different mapping),

21

but will probably give weird results if applied to both feedback channels at the same time. A good

rule of thumb is: Unless you know exactly why you need to use the second feedback channel, don’t.

And if you do use it, try to avoid fancy pitch and delay alterations, and don’t rely on use of MIDI

controllers.

1. Fixed pitch sequences : FEED PMODE = 5. The sequence file is shared by the two channels.

2. Pitchlag: FEED PMODE = 7. Currently, you cannot do independent pitch lag alterations on

the two channels.

3. Random pitch mods: FEED PMODE = 4. ???

4. Random delay: there’s only a single random delay array specification (RANDDELAY ARRAY),

though it can be selectively applied to one or both channels.

22

5 Sample Parameter Files

This section contains examples of some parameter files. More are included in the “params” directory

of the distribution.

5.1 demo/keythru

Just output (on MIDI channel 1) whatever the person plays for 10 seconds,
as in normal music performance. This just demonstrates that you can
collect performance data without doing any funny stuff. Setting FEED_ON
to zero would allow investigating performance in the absence of auditory
feedback.

FEED_ON 1
FEED_CHAN 1
FEED_PMODE 0
FEED_VMODE 0
FEED_LEN 0

METRON_ON 0

TRIGGER 1 T 10000 END_EXP 1

5.2 Modified “keythru”

File for a music experiment in which keystrokes are delayed by 250
ms and also sound a random pitch, as in Finney (1997). Terminate
the trial with <ctrl-C>.

FEED_ON 1
FEED_CHAN 1
FEED_VMODE 0
FEED_LEN 0
FEED_PMODE 4
FEED_DMODE 1
FEED_DVAL 250

METRON_ON 0

23

5.3 sample experiments/aschersleben

Synchronization task with an 800 ms isochronous pacing signal and 70 ms
delayed auditory feedback to the subjects keystrokes. The feedback tones
are of fixed pitch, volume, and length, regardless of the subject’s
keystrokes. Ends after 36 pacing tones. Similar to Aschersleben and
Prinz (1997).

Change FEED_DVAL to 0, 30, or 50 for the other delay conditions in
their experiment. To cover up synchronous physical keystroke noise,
set MASK_ON to 1 (this assumes you have an appropriate masking noise
programmed on MIDI channel 2). To investigate effects of tempo on
the amount of negative asynchrony (tapping before the metronome
pulse), simply alter MSPB.

FEED_ON 1
FEED_CHAN 1
FEED_NOTE 90
FEED_VMODE 1
FEED_VEL 127
FEED_LEN 20
FEED_PMODE 1
FEED_DMODE 1
FEED_DVAL 70

MASK_ON 0
MASK_CHAN 2
MASK_NOTE 64
MASK_VEL 30

METRON_ON 1
MSPB 800
MET_CHAN 1
MET_NOTE 60
MET_VEL 127
MET_LEN 20

TRIGGER 3 M 37 END_EXP 0

24

5.4 sample experiments/finn 99 275

Sample experiment from Finney (1999). This is a continuation
paradigm with a 4-2 patterned pacing tone. This trial gives
auditory feedback to keystrokes (with 275 milliseconds delay) only
during the continuation phase (not while the pacing signal is on). Typical
subject response is to sometimes tap groups of 5 rather than 4.

FEED_ON 0
FEED_CHAN 1
FEED_NOTE 76
FEED_VMODE 1
FEED_VEL 90
FEED_LEN 100
FEED_PMODE 1
FEED_DMODE 1
FEED_DVAL 275

METRON_ON 1
MSPB 250
MET_CHAN 1
MET_NOTE 86
MET_VEL 100
MET_LEN 30
MET_PATTERN_ARRAY 8 1 1 1 1 0 1 1 0

TRIGGER 1 M 32 FEED_ON 1
TRIGGER 2 M 32 METRON_ON 0
TRIGGER 3 M 92 END_EXP 0

25

5.5 Split keyboard

Randomized delay to keystrokes on right side of keyboard, no delay to
keystrokes on left side of keyboard. Terminate the trial with <ctrl-C>.

FEED_ON 3
FEED_CHAN 1
FEED_VMODE 0
FEED_LEN 0

FEED2_ON 2
FEED2_CHAN 1
FEED2_VMODE 1
FEED2_VEL 100
FEED2_LEN 100
FEED2_PMODE 0
FEED2_DMODE 2
RANDDELAY_ARRAY 6 100 150 200 250 300 350

SPLIT_POINT 60

6 Important Program Limits

FTAP has a number of hard-wired limits; if these are a problem, you can change the numbers in the

source and recompile (see “src/ftaplimits.h”). The one which is most likely to be a problem is the

number of stored events: FTAP does not do any disk I/O while a trial is running (to avoid the timing

overhead). All data (keystroke, metronome, and feedback events) is stored in memory until the end

of a trial. The space for this is allocated statically to avoid any overhead of memory allocation; a

maximum of approximately 7500 notes can be stored with the default allocation.6

1. MAXNOTES = 15000: Maximum number of stored events (with separate allocations for input

(keystroke) and output (feedback and metronome) events). Note that NoteOn and NoteOff

are separate events. This limit (approximately 7500 notes) might be reached in a long musical

performance. It’s possible that on a machine with a decent amount of memory this could be

increased to a much larger value without consequence; it is also possible that this default might

be too large for some configurations.

2. MAX TRIG EVENTS = 60: Maximum number of trigger events. Should be enough for most

conceivable purposes.
6A possible solution would be to add a new parameter to allow a user to specify a default (larger) allocation that

is dynamically allocated by FTAP (and locked in memory) before the trial timer starts.

26

3. MAXPATTERN = 20: Maximum length of metronome pattern. Should be enough for most

purposes.

4. MAXRDELAYS = 10: Maximum number of random delays. Should be enough for most

conceivable purposes.

There is also a limit on the number of “active” events (that is, events in the scheduling queue)

which is MAX TE EVENTS (currently set at 2000). This is unlikely to be a problem for FTAP

itself, but is a problem for the “playftap” program which plays FTAP output files (see Appendix I).

“playftap” is compiled with a larger limit for this value.

7 Output File Format

The output file name is hardwired to the format

<paramfilename>.<sub>.<block>.<trial>.abs

where sub, block, and trial are specified as parameters (the SUB, BLOCK, and TRIAL parameters

default to the strings “sub”, “block”, and “trial” if not explicitly specified). The suffix “.abs” is

around for historical reasons; it represents the fact that time values in the output file are absolute,

rather than relative to the preceding event.7 Since the primary use of the output is for data analysis,

the output is in a columnar ASCII format rather than, say, a MIDI file (though the latter could be

created from FTAP’s output, with some loss of information).

The output file not only provides a full listing of all input and output events, but also provides

information about the active FTAP parameters, the functioning of FTAP, and timing diagnostics. My

approach has been that the output files should be self-explanatory; thus, all characteristics of the trial

(the parameters) plus diagnostic information and date should be included. Unnecessary information

can be removed (using, for example, PERL, Python, or |STAT), but unrecorded information can

never be recovered; too much information is better than too little. However, this philosophy has

been compromised a bit because the header was getting long and unwieldy. The current approach

is that all parameters explicitly specified by the user are printed, as well as a subset of others that I

consider to be crucial (see annotations in Section 4.2). To print out all parameters (recommended,

e.g., if you don’t understand why FTAP is behaving a certain way), set the FULL PRINT PARAM

parameter to 1.
7This should probably be changed to “.ftap”, but I have code and shell scripts which expect the former. The file

naming format is kind of ugly, but it forces the file name to usefully identify the experiment conditions.

27

If the STDOUT param is set to 1, a data file is not written; see description of the STDOUT

parameter. This facility is no longer supported, but probably works.

7.1 Comment Lines, Parameters, and Output Diagnostics

The data file starts with a listing of informational non-data lines. This header cannot be turned

off, though there is some control over just how much gets printed via the FULL PARAM PRINT

parameter. These non-data lines (e.g., the parameter listings, and output diagnostics) are always

preceded by “# ”; the marking of all these lines with “# ” in the first column makes them easy to

filter out. The parameter values are those at the start of the experiment, before any trigger changes.

The following output-only information values are listed along with the actual experiment param-

eter values:

1. TIME: Time and date that this run of FTAP started.

2. VERSION NUMBER: FTAP version number, currently 2.1.05.

3. PARAMETER FILE: Name of the parameter file.

Important Diagnostic Parameters (see Section 9.6 for more details). These can be ignored unless

you’re doing real-time data collection.:

1. SCHED AV: Average time (in ms) between calls to the output scheduler. Less than or equal

to 1 is good. More than 1 indicates a problem.

2. SCHED MAX: The maximum time (in ms) between output scheduling calls. More than 3 or 4

ms is probably bad. Running FTAP as “root” and disabling networking and X Windows will

probably improve things.

3. SCHED GT1, SCHED GT5, SCHED GT10: Number of times that calls to the internal schedul-

ing routine were separated by times more than 1, 5, or 10 ms respectively. Any time more than

5 indicates a problem (and there should be no more than a small number greater than 1).

4. SCHED MAX TIME: time of occurrence of the maximum scheduling discrepancy (SCHED MAX).

(ms from trial start).

On my system, trial runs have typically had no more than one or two scheduling times greater

than 1 ms. Note that even if there are occasional long scheduling times, the data is not necessarily

corrupt, as the scheduling glitch may have occurred at a time when there was nothing to do anyway!

28

The following secondary diagnostic variables allow looking at this. They are not included in the

default printout, and may all eventually be removed.

Secondary Diagnostic Parameters:

1. AV DELAY: The overall average delay, a possibly useful diagnostic when using random delays.

Probably bogus if multiple feedback channels are in use.

2. DISC AV: output events are scheduled to be written at a certain time, but the time they’re

actually written may be different if something has gone wrong. The value is the average

descrepancy between actual and correct time. This can be checked in the output file, as the

actual (not intended) time of the write() call to “/dev/midi” is provided there.

3. DISC MAX: Maximum value of such discrepancies.

4. DISC MAX TIME: The time (since beginning of trial) where this discrepancy occurred. The

offending event can then be looked up in the output file.

5. INPUT MAX: in a multi-byte MIDI message, the maximum time between FTAP’s accessing

of the individual bytes.

6. INPUT MAX TIME: The time where INPUT MAX occured.

MIDI Error Diagnostics: On one system, I would occasionally (about 1 event out of 15,000)

see what appeared to be hardware MIDI errors. FTAP currently detects some obvious examples (a

MIDI Note Number of 0, or larger than 127, or a MIDI velocity greater than 127), and will print

a ”MIDI WARNING” diagnostic to the screen, and will list information about the detected error

(for up to 10 errors) in the output file, with a “parameter” of MIDI ERROR. If you understand the

MIDI data stream, how FTAP handles MIDI input and output, and the details of the MIDI data

that your keyboard puts out (see Appendix D) it is usually possible to reconstruct the correct data,

but it requires a bit of detective work. It is too much detail to put here (see also Section 7.6).

7.2 Data Line Format

Any line in the file not starting with the ”# ” character (or white space) is an 8 column data line,

arranged in ascending order by time of occurrence (indication of trigger actions is included in these

data lines). The data line format was originally designed for MIDI note events, such as keystrokes,

metronome, and feedback. However, the data file also contains output lines for controller events and

29

lines showing when trigger events occurred; these both require different types of information. The

output format for these events retains the same column layout as that for MIDI note events, but

reuse of the fields has resulting in a somewhat inelegant mix of formatting. However, it should be

easy to extract whatever information is of interest.

Data lines contain 8 columns. Column 1 always indicates the elapsed millisecond time of the

recorded event relative to trial start, and column 8 always identifies the event type. The event type

codes are:

Note data:

1. ‘K’: Keystroke (both NoteOn and NoteOff, that is, key press or release).

2. ‘F’: Feedback (sound in response to a keystroke. May be delayed or mapped from the keystroke

itself).

3. ‘M’: Metronome event.

4. ‘J’: “Junk” event. Currently only applies to masking noise.

Other:

1. ‘C’: MIDI controller.

2. ‘G’: Output/feedback for a MIDI controller (not mnemonic, simply the letter after ‘F’).

3. ‘T’: Trigger event.

7.3 Note Data

If column 8 is ‘K’, ‘F’, ‘M’, or ‘J’, columns 1-7 have the following contents:

1. Col 1: Milliseconds since trial start.

2. Col 2: ‘D’(own) for key press, ‘U’(p) for key release.

3. Col 3: MIDI channel of the event.

4. Col 4: MIDI Note number of the event.

5. Col 5: Pitch name for the MIDI note number of column 4 (e.g. C#4 for 61). ”#” is always

used for accidentals.

30

6. Col 6: MIDI velocity (0 for key release; any velocity the input device may produce for NoteOff

events is discarded).

7. Col 7: Sequence number for input key presses, as well as for corresponding feedback events.

8. Col 8: Event type = ‘M’, ‘F’, ‘K’, ‘J’.

Example (a key press data line) :

9630 D 1 86 D5 74 12 K

7.4 MIDI Controller Data

If column 8 is ‘C’ or ‘G’, columns 1-7 should be interpreted as follows; understanding some of this

requires knowledge of MIDI details.

1. Col 1: Milliseconds since trial start.

2. Col 2: ‘X’ (meaningless filler)

3. Col 3: MIDI channel of the event (?).

4. Col 4: First byte of MIDI controller data (in decimal). The interpretation depends on column

5. If column 5 is “B0” (MIDI Control Change message), then column 4 will indicate the specific

controller (e.g., 64 for a sustain pedal). If column 5 is E0 (Pitch Bend), then column 4 is the

least significant byte of the pitch bend value.

5. Col 5: The MIDI status byte (nibble) (in hex) of the input controller message. A0 for Poly-

phonic Key Pressure, B0 for MIDI Control Change, E0 for Pitch Wheel Change, . . .

6. Col 6: Second byte of MIDI controller data. For Control Change messages, this will be the

value for the specified controller. For Pitch Bend, it will be the most significant byte of the

pitchbend value.

7. Col 7: 0 (filler).

8. Column 8: Event type: ‘C’ for an input event, ‘G’ for an output event.

Example: A sustain pedal being pressed and released might be recorded as follows:

8000 X 1 64 B0 127 0 C
9000 X 1 64 B0 0 0 C

31

7.5 Trigger Events

If column 8 is ‘T’, columns 1-7 should be interpreted as follows:

1. Col 1: Milliseconds since trial start.

2. Col 2: Trigger subtype: M(etronome), T(rigger), K(eystroke).

3. Col 3: 0 (filler).

4. Col 4: Trigger ID (second field of the TRIGGER parameter line).

5. Col 5: “- -” (filler)

6. Col 6: Internal index; ignore.

7. Col 7: 0 (filler).

8. Col 8: Event type: ‘T’.

Example: A metronome trigger:

TRIGGER 1 M 32 FEED_ON 1

Corresponding output line (metronone at 250 ms MSPB):

8000 M 0 1 -- 0 0 T

7.6 MIDI Hardware Errors

One of our hardware setups has gotten occasional MIDI hardware errors (e.g., a note value of 0); this

occurred about 1 time out of every 15,000 input events. There is now some code in “linux midi.c”

(see the ReadMidiEvent routine) which detects some obvious cases of errors (e.g., a note error of

0), and a diagnostic is printed to the screen. In addition, a “MIDI ERROR” entry is made in the

output file, immediately before the data lines (a maximum of 10 errors is reported); I suggest always

checking your output files for the presence of this string. An example is the following, where the

first field is the time of the detected error, and the other fields are bytes of the MIDI data stream

(these are not necessarily the precise raw bytes, e.g., the input routine has already interpolated MIDI

running status). The velocity of 255 is bogus.

MIDI_ERROR 54675 0x80 19 255

32

If you are getting MIDI errors, there’s not much I can say. I was usually able to recover (by

hand) what the original data should have been, but this requires a certain amount of detective work,

and reasonable knowledge of the MIDI data stream and aspects of your keyboard (it is particularly

difficult because FTAP does not retain an exact copy of the input stream). It should also be noted

that only certain obvious MIDI errors are detected (although this accounts for about 3/4 of the

situations I had problems with). Some useful information is in Appendix D.

7.7 Data Filtering And Transformations

The potentially extensive data in the output file can be filtered for analysis as necessary, though I

recommend keeping the original .abs files around as a complete raw data record. It’s simple to filter

these events using something like the “dm” program of Gary Perlman’s |Stat (//www.acm.org/ perl-

man/statinfo.html) or a shell script, or a Python or Perl program. For instance, if the only data

of interest are the keystroke down times, remove any lines with the comment character (”#”) in

column 1, and then extract all lines with ‘K’ in column 8 and ‘D’ in column 2. The data values in

column 1 of the resulting file will be the keypress times.

8 Troubleshooting

This section contains some hints if you can’t get FTAP to work. Some things have certainly been

overlooked in this Reference Manual; notify me if you find such things, and if you’re motivated you

can always look at the provided source code.

8.1 FTAP isn’t working at all!

If you can’t get FTAP to do anything at all, here are some suggestions.

1. Make sure your Linux MIDI system is configured correctly for FTAP use. FTAP does all MIDI

I/O using “/dev/midi”. A simple setup involves a keyboard attached to MIDI In and a separate

tone generator attached to MIDI Out; the only sound output should be from the tone generator.

When you tap on the music keyboard when FTAP is not running, you should hear no sound

(FTAP wants to control all auditory feedback).8 However, if you run the “midicopy” program

in the ‘bin’ directory of the distribution (source is in the“utils/midicopy” directory), then your

keyboard should create sounds through the tone generator. If “midicopy” isn’t working, you
8Some MIDI/sound cards (e.g., the Roland MPU-401) default to echoing MIDI in back to MIDI out, so this is not

a definitive test.

33

need to sort out your MIDI setup (e.g., check the MIDI channel settings on the devices you’re

using).

If “midicopy” works, then your basic MIDI setup should be OK. If FTAP nonethless seems to

not be working, check the MIDI channels in whatever parameter file you’re running, and look

at the output file to see whether or not input is being recorded.

8.2 FTAP isn’t doing what I think it should!

If you’ve created a parameter file, and it’s doing something but not what you think it should be

doing, here are some suggestions (in approximate order). See also Section 4.7:

1. Look at your input file, and make sure you understand what each line is supposed to do. Remove

lines that are not relevant for your particular experiment. Make sure that any parameters that

are important to your experiment are explicitly specified rather than using defaults.

2. Check the output file; everything FTAP has done is in it. Make sure you understand it.

3. Turn on the FULL PARAM PRINT param so the output file will have a full listing of all the

active parameter values for your experiment.

4. Reread this Reference Manual and the User’s Manual to see that you haven’t missed something.

5. Look at the C source and/or contact me.

8.3 Quirks/Bugs/Features

Some quirks of FTAP are described here. These are placed here to aid in troubleshooting. You can

tell me which one(s) are intolerable for future releases.

1. FTAP will print out a diagnostic on any MIDI message it can’t parse, such as SYSEX messages

(it used to abort). FTAP handles a lot of different MIDI messages (although it ignores irrelevant

ones), but often when I try new keyboards I find something new that FTAP can’t handle. FTAP

does not have a smart MIDI parser and it is not clever about dealing with and recovering from

input errors. See Appendix D for some discussion of MIDI.

2. MIDI controller input is subject to the FEED ON, FEED DMODE, and FEED CHAN ma-

nipulations before output, but it is not subject to other manipulations.

3. File names used for input (sequence and click files) are always interpreted relative to the

directory the parameter file is contained in.

34

4. For some (most?) tone generators, having multiple simultanous events of the same pitch may

cause some notes to get cut off; this might occur if doing something like using a SAMEPITCH

pitch mapping (in which all keystrokes get feedback with the same pitch) in an experiment in

which subjects are using multiple fingers. If this is a problem, experiment with different tone

generators and programming; play around with scale tuning to set all notes to the same pitch

if you can do that on your tone generator, etc.

5. If ”click files” are being used to play output during an experiment, and if there are multiple (3

or more) precisely simultaneous output events, the timing diagnostics may consistently show

some inter-scheduler times of 2 or 3 milliseconds. Although I have not isolated the exact

source of this, my guess is that it is due to the use of a (kernel) busy loop within the 4Front

driver. It would be interesting to see whether the problem occurs with the ALSA drivers, which

supposedly do not use a busy loop.

6. Forcing the file name to be in a particular format (with a “.abs” suffix) is somewhat ugly,

inflexible, and un-Linux-like.

9 Installation: Millisecond-resolution Data Collection

FTAP can do data collection with reliable millisecond resolution (see Finney, 2001b, which is rec-

ommended/required reading), but there are a number of configuration issues involved in doing this.

Such “real-time” use makes use of facilities requiring root privileges. In addition, not all MIDI

card/Linux driver combinations are able to meet this criterion. FTAP should work fine when run as

a normal user, but if you’re doing serious data collection there are some additional concerns.

9.1 Root Privileges

When FTAP is being used for real-time data collection, it will use the sched setscheduler and mlockall

system calls, as well as the “/dev/rtc” real time clock, all of which require root privileges. If root

privileges are not available, FTAP should run just fine, except for some small timing inaccuracies.

However, real time clock support must still be enabled (for now). FTAP will print out either

“Running with superuser privileges” or “Running as normal user”, depending upon which is the

case.

The recommended installation for running “ftap” for real-time data collection is to configure

it as a setuid root program; configuring the program this way requires superuser privileges. Once

this is done, any user can run FTAP as a real-time process. The “installftap” script in the “bin”

35

directory shows how I do this, but you and/or your system administrator should understand exactly

what this script does before trying to do this. NOTE: “setuid root” programs on a Linux machine

are a potential source of breached security. I don’t think there are any major security issues with

the FTAP program (though I am not a security expert); e.g., it is not possible to invoke a shell or

execute another program from FTAP, and although FTAP may gobble system resources while it’s

running it is explicitly designed to be interruptible from the keyboard. If you’re running on your

personal machine (and it is not subject to hacker attacks), there should be no worries. If you’re in a

potentially hostile environment, check with your system administrator or technical support person.

This is one reason why FTAP is distributed in source code form. “setuid root” privileges should

only be given to a trusted program. If you are going to run FTAP with root privileges, then I

recommend that you compile it from scratch (just run the “makeftap” script in the “src” directory,

though see Section C.4). Anyone who installs an unknown binary with setuid root privileges is asking

for trouble. (If I really wanted to be secure, there should be some sort of security checksum on the

binary and source, but I don’t think FTAP is going to get the wide use of a program like sendmail

:-) .)

FTAP requires that the “/dev/rtc” real-time clock be configured; this may or may not be the

default on your system (it appears to be on RedHat, but not on Mandrake; see Section C). (This

really should only be required if you’re running as “root”, but currently FTAP won’t execute without

it.) RTC is used (perhaps counterintuitively) to insert short pauses while FTAP is running. To

prevent FTAP from hogging system resources when run with root privileges, FTAP contains a

.49 ms delay every cycle (this, among other things, allows for terminating FTAP with a keyboard

interrupt (DEL or ctrl-C). If run without root privileges, FTAP will run perfectly adequately for

test and development purposes, and might even be adequate for collecting data; run it both ways,

look at the output diagnostics (described later) and see for yourself. Counterintuively, on the basis

of the output diagnostics FTAP may appear to run faster when run without root privileges, as in

this case there is no forced delay in each loop (it’s not necessary). Crucially, however, running with

root privileges avoids preemption (that is, the worst-case performance is superior).

9.2 General Concerns

Because of the real time coding in FTAP, system load is less of a problem than it might be in other

cases, but data collection should still be done on a system with no other users logged in (they probably

wouldn’t be happy with system performance anyway), and with no heavy networking activity (e.g.,

not acting as a server). I have found some FTAP performance degradation when X Windows is

36

running (and I suggest running from a console screen), but I don’t bother taking the system down

to single user mode. Check the diagnostics and see what works for you.

9.3 Hardware and Linux Configuration Issues

[This section is not totally up to date, and it partially duplicates information in Section C, but I’m

not bothering to fix it just now. Read that section as well.]

FTAP has been successfully run on Pentium-based hardware (200 MHz) running Redhat Linux

5.2, 6.1, and 6.2 (Linux 2.0 and 2.2 kernels), with a Creative SoundBlaster 16 MIDI card (FTAP does

not depend on any particular card, but there are cards that don’t work; see the following section).

I use the 4Front MIDI driver (http://www.4front-tech.com) rather than the standard Linux drivers

because they have better time resolution for MIDI output (see discussion in Section 9.3.1); and in

fact, the standard drivers currently will not work with FTAP (see Section C). [This section used

to say “I suggest you just experiment around with FTAP on whatever driver setup you have until

you decide that FTAP will be useful for you; at that point, run the benchmarks in Section 9.6, and

consider changing to the 4Front or ALSA drivers if there’s a timing problem. Do not rely on precise

timing for important data collection on your system until you have run these tests.”]

I recommend using a separate keyboard and tone generator, with the sound amplication equip-

ment and headphones only plugged into the tone generator. I have not tried using an internal

computer sound card as the tone generator; it may (or may not) work. FTAP needs full control

over feedback generation, so the keyboard should not directly control the tone generator. On some

keyboards it is possible to disable direct communication between the keyboard proper and the key-

board’s tone generator and treat the tone generator as logically separate from the keyboard (e.g., by

turning off MIDI LOCAL mode), so you can try this if you know your equipment.

9.3.1 Car(d)s and Drivers

Of the limited hardware I’ve tested, my best results were with a standard, old-fashioned Creative

SoundBlaster 16 card (a genuine one, not a clone). A Roland MPU-401 card (using the UART mode

which allows direct access to the MIDI data stream) does not appear to handle the high throughput

which I use as a benchmark test, and I never got an ES-1371 to work correctly (though I’m told that

it should). Since all I/O is at a very low level (raw byte reads and writes on “/dev/midi”), it should

also be possible to use a MIDI interface based on a serial or parallel port.

The standard OSS/Free drivers supplied in Linux (at least the RedHat versions I’ve worked with,

and probably the others) have a 10 ms latency for MIDI output, at least when used with cards

37

without interrupt capability, such as the SoundBlaster 16. That is, the driver polls for pending

MIDI output every 10 ms (1 ‘jiffie’), and writes out all pending I/O at that time (see the midi poll

routine in midibuf.c in the driver). Althought this is probably harmless or adequate for most music

applications, it is not adequate for real-time experimental software. Section 9.6 describes a method

of determining whether this is a problem on your system. The commercial 4Front driver does not

suffer from this problem, though it is only available in binary form ($20 from www.4front-tech.com);

running the benchmark described in Section 9.6 shows that the 4front driver will run with millisecond

precision (that is, at the maximal throughput of MIDI), though it apparently uses busy loops. The

free ALSA drivers (www.alsa-project.com) are also supposed to be free of this problem, though I

haven’t tried them.

9.4 Tested Card/Driver List

[See also Section C]

This section lists the card/driver tests that I have tested with the loop test in Section 9.6. Please

let me know if you have other combinations that work so I can expand this list!

9.4.1 Success

1. SB-16 with 4Front Driver.

2. Soundblaster Live! Value with 4Front Driver.

9.4.2 Failure

1. SB-16 with standard Linux driver: only 10 ms granularity on output.

2. Roland MPU-401: time out errors.

9.5 On-line Diagnostics

When FTAP terminates, it will print out timing diagnostics, such as the following:

Mean time between sched()’s (ms): 0.01, schedcnt: 194077

> 1 ms: 1, > 5 ms: 0, > 10 ms: 0, max: 2 ms

If there are many times > 1 ms, or the maximum is greater than 3 ms or so, then your system

configuration is not achieving adequate real-time. If you are trying to collect data, make sure FTAP

is running as setuid root, and try to make sure your Linux system is running with as few processes

as possible.

38

NOTE: if ”click files” are being used to play output during an experiment, and if there are

multiple (3 or more) precisely simultaneous output events, the above diagnostics will consistently

show some inter-sched() times of 2 or 3 milliseconds. Although I have not isolated the exact source

of this, my hypothesis is that it is due to the apparent use of a busy loop within the 4Front driver.

It would be interesting to see whether the problem occurs with the ALSA drivers, which supposedly

do not use a busy loop.

See Section E for some details on implementation that may help clarify these diagnostics.

9.6 MIDI Throughput Benchmarking

(See Finney, 2001b, for more detail.)

The above diagnostics only test the internal scheduling of FTAP; they cannot test the speed and

functionality of the MIDI interface hardware and software. MIDI hardware bandwidth is approxi-

mately 30 Kbytes; at 3 bytes for each note on or note off message, this gives a maximal resolution

of approximately 1 keystroke event per millisecond, which is adequate for most human behavior. I

consider FTAP to have adequate performance if it can match this millisecond resolution, and it does

so on my system. However, not all hardware or drivers can handle the maximal bandwidth. This

section describes how to check this on your system.

Once you have a working MIDI setup (e.g., you can play from a keyboard with the “midicopy”

program), and you can run simple FTAP parameter files, you may wish to verify FTAP MIDI

throughput. My approach to doing this requires a cable which can connect the MIDI output port

back to the MIDI input port. If your computer MIDI interface provides female MIDI connectors,

the required loop can be set up with a standard MIDI cable. If the MIDI interface provides male

connectors (as with most joystick MIDI interfaces), then you will need a more specialized cable or

connector with female MIDI connectors (5 pin DIN) at both ends, with pin 2 connected to pin 2

(ground), pin 4 connected to pin 4, and pin 5 connected to pin 5.

Such a loop allows an FTAP feedback event to be immediately interpreted as a keystroke event.

When FTAP runs the “params/benchmark/looptest” file, and the system is configured with such a

cable, FTAP will write a single output priming note (both NoteOn and NoteOff), and then cycle this

message in and out 2000 times. On a well performing system, this should take a total elapsed time

of 4 seconds (4000 events, 1 ms/event), though there is also some startup overhead. If your Linux

driver has the 10 ms polling problem mentioned in Section 9.3.1, the elapsed time will be closer to

40 seconds. Most importantly, just look at the data in the ‘looptest.sub.block.trial.abs” output file;

this will allow you to see the exact time course of the messages in the system.

39

If this benchmark appears to show a problem, and you wish to verify whether it is an FTAP

problem or a MIDI interface problem, the “rawmidiloop” program in the utils directory might be

of some help (this uses the same loop cable configuration, but directly reads and writes the MIDI

interface without involving FTAP). This used to work, but I don’t know if it still does.

References

Aschersleben, G. and Prinz, W. (1997). Delayed auditory feedback in synchronization. Journal of

Motor Behavior, 29:35–46.

Finney, S. A. (1997). Auditory feedback and musical keyboard performance. Music Perception,

15:153–174.

Finney, S. A. (1999). Disruptive Effects of Delayed Auditory Feedback on Motor Sequencing. PhD

thesis, Brown University.

Finney, S. A. (2001a). FTAP: A Linux-based program for tapping and music experiments. Behavior

Research Methods, Instruments, and Computers, 33:63–72.

Finney, S. A. (2001b). Real-time data collection in Linux: A case study. Behavior Research Methods,

Instruments, and Computers, 33:167–173.

Lutz, M. and Ascher, D. (1999). Learning Python. O’Reilly, Sebastopol.

Pfordresher, P. Q. (2001). Auditory Feedback in Music Performance: Serial Order and Relative

Timing. PhD thesis, Ohio State University.

A Revision History

1. 2.1.00: Initial Linux version.

2. 2.1.01: Better (though still imperfect) handling of MIDI input errors; “WARNING” messages

printed to screen (and “MIDI ERROR” diagnostics to file) in case of unrecognized or incorrect

MIDI bytes. Also print out the output file name when FTAP is run.

3. 2.1.02: Internal use only.

4. 2.1.03: The first public release. Changed MIDI parsing code to ignore all MIDI System Real-

Time Messages (in particular, the Timing Clock message put out by some Yamaha PortaSound

40

keyboards). Improved (and simplified!) ‘midicopy’ utility. Included the getttimeofday bench-

marks from Finney (in press) in the distribution (“utils/gettod test”). Major revisions to this

Reference Manual.

5. 2.1.04: Internal use only.

6. 2.1.05: 1 major bug fix: triggers that change a feedback response parameter between key press

and key release now work correctly, fixing a bug where a note might not be terminated (this

was documented in Section 4.7.1 of the 2.1.03 Reference Manual). The fix involves saving all

parameters on key press, and using those values on key release. Also fixed a minor bug involving

MIDI controllers. Minor revision to User’s Guide, significant revision to this reference manual.

Future revisions wish list:

1. Fix it so FTAP can run for evaluation purposes using the standard OSS Linux drivers (i.e., sup-

port NON BLOCK as well as select()). Also, allow non-realtime use if RTC is not configured;

currently it won’t run at all.

2. Add a feature so that a tone (PULSE) can be sounded on the basis of a trigger. More generally,

allow calling any C function on the basis of a trigger.

3. Test and expand MIDI capabilities: test ALSA drivers, test use of internal MIDI synth for

output, test MIDI on a serial port.

4. Outboard the specifications of all pitch mappings to an external file.

B Distribution

The distribution is a directory hierarchy (distributed in gzipped tar format) which contains the

following directories:

B.1 bin

The “bin” subdirectory contains a compiled version of FTAP for a Pentium-based computer. This

has been compiled under the RedHat 6.1 (or maybe 7.0) Linux distribution with the included GNU

C compiler. The bin directory also contains a few other potentially useful programs (with sources in

the “utils” directory).

41

B.2 doc

The “doc” subdirectory contains LATEX, .dvi, .ps, and .pdf versions of the User’s Guide and this Ref-

erence Manual. It also contains an “scip summary.text” file, which is the summary of a presentation

I gave at the Society for Computers in Psychology conference in 2000, which describes aspects of the

“real-time” implementation of FTAP.

B.3 params

The “params” subdirectory contains sample parameter files that you can run. Each has a comment

explaining its purpose. There are 3 subdirectories:

1. demo: parameter files demonstrating many of FTAP’s capabilities.

2. sample experiments: parameter files providing (approximate) replications of a number of stud-

ies in the tapping literature.

3. benchmark: parameter files for testing FTAP’s performance (see Section 9.6).

B.4 src

The “src” subdirectory contains the C source code for FTAP itself. Currently, there is not a makefile,

but rather a “makeftap” shell script which compiles the source. Eventually, the included (system)

.h files from my Linux distribution should also go here, so that you can see what differences there

are in case you have trouble compiling.

B.5 utils

The “utils” subdirectory contains the source for a few C utility programs, as well as a copy of the

Python script in Section F. These programs have not been tested recently, but should still work.

“playftap” is a useful utility for playing FTAP output files; see Section I for details. “midicopy” is a

simple but useful diagnostic/test program mentioned in Section 9.6. “rawmidiloop” is a less useful

(and perhaps non-functionaing) diagnostic program. gettod test contains a version of the Linux

gettimeofday tests reported in Finney (2001).

C Linux OS Configuration Issues

This section contains some minimal notes about Linux OS configuration. If you have any more

information to add, please contact me.

42

C.1 OS Versions

FTAP has been run with various RedHat releases, including 2.0 and 2.2 kernels. It has also been

run with Mandrake 8.0, using a 2.4 kernel. RedHat appears to configure the real-time clock by

default (“/dev/rtc” and supporting kernel/module code). Mandrake appears not to; “insmod rtc”

on Mandrake should be sufficient for installing RTC.

Although the real-time clock is needed by FTAP when run for real-time data collection (see

Finney, 2001b), in an ideal world it wouldn’t be necessary for evaluation use. However, currently

FTAP won’t run without it. This may change in the future.

C.2 Drivers

As noted elsewhere, FTAP usage currently requires the 4Front MIDI driver to run (http://www.4front-

tech.com) (the ALSA drivers might work, but I haven’t tried them). Here are the gory details: FTAP

is implemented as a single process, and it must be able to check MIDI input without blocking (this was

a somewhat arbitrary implementation decision; an alternate approach would be to have a separate in-

put thread and output thread). My initial Linux port used the stock OSS-Free drivers supplied with

RedHat and a basic SB-16 card, and did non-blocking reads using the O NONBLOCK (O NDELAY)

flag. However, the loop test (and follow up investigation) showed that output occurred with a 10

ms poll (based on jiffies and the HZ variable), which was not sufficient for my desired “real-time”

(millisecond resolution) performance (it is possible that other interrupt-driven MIDI cards would

give adequate performance with the OSS-Free drivers). I then tried the commercial 4Front driver

(available only as a binary). Unfortunately, at the time (this may have changed) the 4Front MIDI

driver did not support NONBLOCK mode, but it did support the select() system call, which can

accomplish the same thing. I recoded FTAP to use select(), and the tested performance showed

satisfactory millisecond resolution on output.

Much to my chagrin, I didn’t realize until much later that FTAP no longer worked with the

standard Linux OSS drivers, even for evaluation purposes. This is probably because that driver

doesn’t support select(), though I haven’t chased this down for sure. In fact, both select() and

NONBLOCK really should (in my opinion) be supported on any MIDI driver. Hopefully ALSA does

this, and 4Front may be incorporating NONBLOCK in a future release; I suspect the stock Linux

drivers will not be fixed. In the meantime, FTAP has not been recoded so that it works with either

select() or NONBLOCK.

43

C.3 Hardware and MIDI cards

FTAP should run on any reasonable Intel-based Linux machine (let me know if you try it on another

architecture, such as Alpha or PowerPC). The two MIDI cards that have been successfully tried are

a Creative SB-16 (old and simple) and a more recent Soundblaster Live! Value Digital card. In fact,

most any card (except for a Roland MPU-401) is likely to work, but you really should verify MIDI

throughput using the tests described earlier (Section 9.6).

C.4 Compilation

FTAP compiles fine under various RedHat releases (not surprising, since it’s what I use). It does not

compile on the Mandrake 8.0 release. This appears to be due to some small discrepancies involving

include files. This could probably be fixed easily; I haven’t done so yet.

D MIDI

FTAP does its own parsing of MIDI input, and thus has to be prepared for whatever a keyboard

generates (and this differs across keyboards; MIDI allows a number of options). If you’re having

problems some of this information may be useful to you. This section will also attempt to document

just how FTAP manipulates MIDI input and output. This section will not be a MIDI tutorial; see

“http://www.borg.com/˜ jglatt/tech/midispec.htm” for an excellent technical overview of MIDI.

D.1 MIDI Data Stream

The basic data processed by FTAP are key press/release events, but there are a number of variants

in how these may be encoded. In addition, keyboards may output a number of other types of MIDI

events.

MIDI Status bytes are unambiguously differentiated from data bytes by having their high bit set.

Key press (NoteOn) events are indicated by a 0x90 MIDI status. There are two allowable ways of

signalling a NoteOff (key release) event: either a MIDI NoteOff event (0x80 MIDI status, possibly

with a non-zero velocity value), or a MIDI NoteOn event (0x90) with a velocity of 0. The MIDI

specification also allows optimizing data stream usage with “running status”: if multiple messages

in a sequence have the same status byte, the status byte can be omitted from all except the first

message. Signalling NoteOff with a 0x90 message with zero velocity allows extensive use of running

status.

FTAP can handle all of the above variants; internally, it places all input data into individual

messages without running status, and with NoteOff Events encoded separately from NoteOn events.

44

Velocity in NoteOff events is discarded. If FTAP detects any MIDI errors, the MIDI ERROR lines

in the output file indicate FTAP’s parsed input, not the raw input.

Keyboards can also output many other event types. Attached pedals and the modulation wheel

create Control Change Events, and the Pitch Bend Wheel (or the lip sensor on a wind controller)

may put out Pitch Wheel change events. There are two different types of Key Pressure events.

In addition, some keyboards will send MIDI ACTIVE SENSE, MIDI CLOCK, or System Exclusive

messages. FTAP cannot deal with (variable-length) System Exclusive messages (a Juno 106 keyboard

puts these out for some reason), and it will quit inelegantly.9. FTAP will correctly process and record

most most controller messages in the output file. MIDI Channel Pressure, and Program Change will

be ignored and discarded, as will Timing Clock or Active Sensing messages. SYSEX messages (or

other System Common messages) cause FTAP to terminate, probably ungracefully. WARNING: I

have not tested all of these options, so I can’t guarantee that they work. On the other hand, I don’t

know of any failures.

If you want to see what the raw data stream from your keyboard looks like, use the “midicopy”

program in the ‘bin’ (or “utils”) directory in the FTAP distribution.

D.2 MIDI Input Devices

Here are some specific notes on the keyboards I’ve tried. Some keyboards may put out MIDI

sequences that FTAP is not currently prepared to handle; if FTAP gives errors with your keyboard,

use the “midicopy” program to determine just what your keyboard/controller is doing.

Successfully tested input devices:

1. Roland RD-600 controller: works fine with FTAP. Encodes key release with an 0x80 status

byte and a fixed velocity of 64. Uses running status. Use of the Rx and Tx keys allows effective

disabling of MIDI Local mode. Pressing the pedal seems to put out multiple controller messages

for some reason.

2. Fatar Studio 49: Encodes key release with an 0x80 status byte and variable velocity. Does not

use running status. Input device only; requires a separate tone generator.

3. Yamaha DX-100. Uses 0x90 plus 0 velocity for NoteOff, but does not use running status. Not

velocity sensitive; constant MIDI velocity of 64 for all keystrokes.
9FTAP’s input MIDI parsing is perhaps its weakest point. SYSTEM EXCLUSIVE messages are of varying length,

and are not handled. ACTIVE SENSE and MIDI CLOCK messages can occur in the middle of other messages, but

FTAP just ignores them (I hope!). “linux midi.c” should probably be rewritten from scratch...but it does work!

45

4. DX7-II. This worked with older versions of FTAP; I haven’t tested it recently. The only likely

problem would be whether Channel Pressure Messages get ignored properly (if this doesn’t

work, the DX7 may allow disabling transmission of Aftertouch). MIDI Local Mode can be

disabled.

5. Yamaha Portasound 500M: puts out Timing Clock messages, but FTAP now ignores them.

6. Yamaha WX5 Wind controller. Both breath control and pitch bend are recorded.

Unuseable input devices:

1. Juno-106: puts out System Exclusive messages (at least with our setup); FTAP cannot deal

with these.

From the point of view of tapping experiments, the length of key movement for a MIDI keyboard

compared to, say, touching a metal plate may be a problem. Note also that input MIDI velocities

across different keyboards are not directly comparable in terms of physical velocity. Since all that

FTAP requires is that input be in MIDI format, a device other than a keyboard could also be used,

e.g., a drum pad, a wind controller, or a custom device of some sort (e.g., an ICUBE system).

If a keyboard allows disabling MIDI LOCAL mode, FTAP can use it for both input and output

D.3 MIDI Output Stream

FTAP’s output encodes Note Off messages with 0x80 status and 0 velocity; running status is not

used.

FTAP sends a MIDI ACTIVE SENSE message to the output port every 200 ms. Most MIDI

devices should have no problem with ACTIVE SENSE, but if this is a problem, you can try setting

ACTIVE SENSE ON in metron.c to 0 and recompiling FTAP. This deals with a problem where

some Linux MIDI drivers would send a MIDI ACTIVE SENSE message on device close; this can

trigger some tone generators (e.g., a TX81Z) to require an ACTIVE SENSE message every 300 ms

to maintain a tone. This interfered with FTAP’s masking noise feature.

D.4 MIDI Output and Output Devices

Much of FTAP’s flexibility derives from appropriate programming of the output MIDI device (i.e.,

tone generator). All of FTAP’s control is in terms of MIDI information. For instance, timbre

differences (e.g., having two different sounds in a structured metronome sequence) are specified

in FTAP by designating different MIDI channels for different events; it is up to the experimenter

46

to set up the tone generator to respond in an appropriate way on the different MIDI channels.

Similarly, relative loudness can be controlled by the use of MIDI velocity parameters, but the actual

loudness will depend on the programming of the tone generator and the voice used. In setting up an

experiment it is necessary and important for the experimenter to measure and calibrate the specific

output devices.

In the simplest case, any tone generator can be used with FTAP, e.g., something which simply

generates a sine wave for MIDI channel one. However, a polytimbral tone generator, combined with

FTAP’s ability to specify MIDI channels, allows the use of separate sounds for pacing and feedback,

as well as the use of masking noise. I have used a Yamaha TX-81Z (available used for about $125).

Since output is simply sent to the “/dev/midi” device, it is possible that an internal computer

tone generator set to respond to writes to this device would work; this has not been tested.

E FTAP: Design and Implementation

This section contains some discussion of the implementation of FTAP; enough (hopefully) to explain

the diagnostics and benchmarking. See also Finney (2001b) and the “scip summary.text” file in the

“doc” directory for further discussion of real-time implementation; these will hopefully convince the

reader that FTAP runs with millisecond precision. If you’re really interested in the implementation,

the source itself is liberally commented (perhaps excessively so; I haven’t always had time to clean

up out-of-date comments).

Timing in FTAP (time stamping of input events, and scheduing of output events) is done at the

millisecond level using the Linux gettimeofday system call (which actually provides microsecond level

precision). If FTAP is running with root privileges, sched setscheduler and mlockall are used to get

real-time priority.

Because output may be asynchronous with input (e.g., when delay is used) FTAP uses an output

scheduling queue that contains an ordered list of scheduled output events (be they metronome or

feedback events), along with the time in which the event should be written out to the MIDI port.

This queue is normally checked at least once a millisecond, and any events scheduled at or before the

current time are then written out. Since it is theoretically possible for the output queue scheduler to

get delayed, the actual and the expected time are checked each time an event is written out; if the

current time is different from the expected time, this discrepancy is recorded. When the program

is completed, the maximum such discrepancy (as well as the mean) is written both to the screen,

and to the output file. If this number is larger than 2 milliseconds or so, you should probably be

concerned.

47

Similarly, MIDI input should be read from the input port at least once a millisecond. Time

stamping of a MIDI message is determined by the arrival of the first byte. If there is to be feedback

in response to the keystroke, it is written to the output scheduling queue (delayed if necessary).

The initial versions of FTAP (on SGI Irix) enforced such millisecond scheduling by using a

1 ms granularity asynchronous interrupt, but this is not provided on all systems. The current

implementation relies on fast CPU speed and high-priority scheduling, and simply does a loop (until

end of experiment) of:

ReadMidiEvent() ;

ProcOutput();

Although this is not provably guaranteed to give millisecond granularity, it does so in practice.

If there are problems, they will show up in the output diagnostics printed to the screen at the end of

a trial (and also printed to the output file). Since the high-priority scheduling of such a continuous

loop (e.g., when run as root with SCHED FIFO priority) can totally monopolize the machine (to

the point of not allowing FTAP to be interrupted by a keyboard interrupt, and requiring a system

reset), a .49 ms pause (implemented with “/dev/rtc”) is inserted on each loop, so that the mean

time between scheduler calls will tend to be .49 ms. If FTAP is run as a normal user, this pause

does not occur, so that the time between scheduler calls may in fact be much less (e.g., .01 ms).

F Sample Experiment Driver in Python

FTAP runs a single trial (potentially long and complex), but an experiment typically contains multi-

ple trials, often randomized, blocked, or counterbalanced. FTAP in such a research situation would

typically be run from a script of some sort which handles these higher level aspects. A shell script

could be used; I use the interpretive language Python, which is installed by default on some Linux

installations (e.g., RedHat), or can be downloaded from www.python.org. Python, as a genuine

programming language, is more powerful, elegant, and general than shell scripts, and I am told by

those who know that it is more flexible and comprehensible than scripting languages like Perl. I like

it a lot. See Lutz and Ascher (1999) for an introduction.

An example script in the Python language that I have used for running experiments is the

following. For this experiment, there are 11 delay conditions, each run at each of two rates (250 ms

or 400 ms); the parameter files names are constructed from a rate prefix and a delay suffix. A sample

parameter file name would be 250p 100, for 100 ms of delay at the 250 ms tapping rate. Trials are

blocked by rate, and the Python program handles the subject, block, and trial (override) parameters.

The program prompts for a parameter file prefix (encoding the rate), subject number, block number

48

(whether this rate is being run as the first or second block), and runs 3 trials of each condition, in

a random order. A break is given after 17 trials. All the experimenter has to do is hit <CR> when

prompted to do so.

#!/usr/bin/env python

Sample driver file in Python for an FTAP experiment

import os, whrandom, sys, string

print "\nEnter parameter file prefix: ",
line = sys.stdin.readline()
prefix = (string.split (line)) [0]

print "\nEnter subject ID: ",
line = sys.stdin.readline()
subject_id = (string.split (line)) [0]

print "\nEnter block number: ",
line = sys.stdin.readline()
block_id = (string.split (line)) [0]

List of all the conditions for this experiment (these are the
parameter files suffixes).
suffixes = ["_s", "_100", "_150", "_200", "_250", "_300", "_350",

"_400", "_450", "_500", "_550"]

source directory for parameter files
param_path = "/home/sf/texp10/params/"

start_trial = 1
trial_count = 3 # of trials in each condition
trial_break = 17 # give a break after 17 trials

create a list in which each suffix/condition occurs 3 times
suffixes = trial_count * suffixes
trial_num = start_trial

Create override parameters for FTAP invocation. Assumes that subject and
block will not change within a single run
sub_param = "SUB " + ‘subject_id‘
block_param = "BLOCK " + ‘block_id‘

49

while suffixes:
if trial_num == trial_break:

print "\nFIRST BREAK: Hit <CR> to continue.."
line = sys.stdin.readline() # experimenter can type anything

randomly choose a condition to run...
suffix = whrandom.choice (suffixes)
suffixes.remove (suffix)

construct the command line to execute...
file = param_path + prefix + suffix
trial_param = "TRIAL " + ‘trial_num‘

exec_line = "ftap " + file + " ’" + sub_param + " ’" + \
" ’" + trial_param + " ’" + " ’" + block_param + " ’"

print "\n\nHit <CR> to start trial %d, file %s" % (trial_num, file)
line = sys.stdin.readline() # experimenter can type anything

os.system (exec_line)
trial_num = trial_num + 1

G Interactive Mode

Interactive mode is an self-documenting (that is, largely undocumented) mode of FTAP that you

enter if you do not provide a parameter file name of the command line. It is not currently supported;

however, I haven’t disabled it, so here are the commands. It was once useful for learning FTAP and

exploring what parameters do, but you’re probably better off editting a test file in one window and

running FTAP from another window. Under no circumstances should you do serious data collection

this way! Interactive mode allows running multiple trials from one invocation of FTAP. However,

the system is not cleanly reset between trials; e.g., parameters which have been changed by triggers

will stay changed, and internal variables may also not get reset. Unless you convince me this is a

valuable facility, I will probably not respond to comments, questions, or bug reports on interactive

mode.

Commands:

1. f <PARAMFILE>: read in the parameters in the named parameter file.

2. p <PARAMSTR>: set a single parameter (e.g., “p FEED ON 1”).

3. t <TRIAL>: set the trial number.

50

4. q: quit FTAP.

5. r: run a trial with the current set of parameters.

6. l: list the current set of parameters.

H User Enhancements/Code Changes

FTAP provides a fixed set of delay and pitch mappings, which can be chosen by integer parameter

values. Additional pitch or delay mappings could be added following the structure of the routines

in “map.c”; this requires C code changes. Currently, there are not clean hooks that allow simple

linking in of such functions.

The necessary steps are.

1. Create a “#define ” for the new feedback mode in in “params.h”.

2. Create a new mapping routine modeled on the existing functions in “map.c”.

3. Add a “case:” statement in the appropriate “map.c” routine (pitchmap or delaymap) calling

your new mapping routine.

If you choose to make such a change, choose a PMODE or DMODE coding greater than 50 to

avoid conflict with future versions of FTAP. If you create a change you think might be generally

useful, let me know so I can consider including it in the distributed FTAP version.

For pitch mappings, the logical thing would be able to read mappings in from a file (similar to

the current SEQFILE stuff) so that no C coding and recompilation was required. This is not in the

current version of FTAP, and will require thinking about file formats for octave and whole keyboard

mappings.

I ‘playftap’ usage

”playftap” is a utility included in the FTAP distribution (see the “utils” and “bin” directories) for

“playing” FTAP output files (that is, hearing them as auditory/MIDI output). I have found this

useful for getting an intuitive sense of what went on in a trial; it is also good for creating audio

examples for presentations. ‘playftap” currently works on my system, but I make no guarantees for

you. The following is the documentation in the code header as of 9/4/00; there are a number of

options to choose exactly what will be sounded.

51

playftap.c: This is a playback program for FTAP output files, making
it possible to listen to the data files (including
things one didn’t hear when running the experiment, like the keystrokes
themselves!). Various aspects of what you hear can be specified by
command line arguments. It currently requires that the input file have
the .abs suffix created by FTAP. It defaults to playing keystrokes if
nothing else is specified.

This code has not been kept up to date, but should work. The accuracy
of the program argument descriptions needs to be verified.

USAGE: there are a bunch of command line arguments which allow choosing
exactly what to listen to. It will not be possible to listen to "junk"
events (masking noise), however, you may want to listen to trigger
events (to know where things changed). You may want to listen to
keystroke events, which on the original run did not (in and of
themselves) make any noise. This means that it may be necessary to
allow specifying MIDI channel for keystokes, since the input keystroke
value may not be suitable for the tone generator.

playftap usage is as follows, where all arguments (except filename)
are optional. This program currently only plays one file at
a time.

playftap -kmft -R<ratio> -T<tchan> -U<tnote> -C<keystrokechan>
-K<keystrokeadd> -S<startpoint> filename

The "k", "m", "f", and "t" turn on playback of keystrokes, metronome,
feedback, and trigger events respectively; you can play these
simultaneously in any combination. Since trigger events in the
file don’t have a MIDI channel or note, the "T" and "U" arguments
allow overriding the built-in defaults of 1 and 120 for channel and
note, respectively. (The sounding time of 75 ms and velocity of
100 for trigger playback are hardwired).
Since keyboard midi channel input doesn’t necessarily correspond to a
reasonable sound, "C" allows overriding the MIDI channel in the
input file (perhaps a note should be added, at least for tapping
(vs musical) experiments). The "K" flag provides a value you
can add to keystroke velocity values (to make them louder); its use
automatically turns on keystroke audio ouptut. The "S" flag
allows for a millisecond time (from file start) for when playback
of the file should begin. The "R" flag allows for altering the
rate of playback (slowing down is sometimes useful); 2.0 will play
at half speed, .5 will play at double speed.

52

53

